Skip to main content

Timeline (Bioavailability) of Magnesium Compounds in Hours: Which Magnesium Compound Works Best?

Abstract

Magnesium is an element of great importance functioning because of its association with many cellular physiological functions. The magnesium content of foods is gradually decreasing due to food processing, and magnesium supplementation for healthy living has become increasingly popular. However, data is very limited on the bioavailability of various magnesium preparations. The aim of this study is to investigate the bioavailability of five different magnesium compounds (magnesium sulfate, magnesium oxide, magnesium acetyl taurate, magnesium citrate, and magnesium malate) in different tissues. Following a single dose 400 mg/70 kg magnesium administration to Sprague Dawley rats, bioavailability was evaluated by examining time-dependent absorption, tissue penetration, and the effects on the behavior of the animals. Pharmacokinetically, the area under the curve calculation is highest in the magnesium malate. The magnesium acetyl taurate was found to have the second highest area under the curve calculation. Magnesium acetyl taurate was rapidly absorbed, able to pass through to the brain easily, had the highest tissue concentration level in the brain, and was found to be associated with decreased anxiety indicators. Magnesium malate levels remained high for an extended period of time in the serum. The commonly prescribed dietary supplements magnesium oxide and magnesium citrate had the lowest bioavailability when compared to our control group. More research is needed to investigate the bioavailability of magnesium malate and acetyl taurate compounds and their effects in specific tissues and on behavior.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Maguire ME, Cowan JA (2002) Magnesium chemistry and biochemistry. Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine 15(3):203–210

    CAS  Article  Google Scholar 

  2. 2.

    Swaminathan R (2003) Magnesium metabolism and its disorders. The Clinical biochemist Reviews / Australian Association of Clinical Biochemists 24(2):47–66

    CAS  Google Scholar 

  3. 3.

    Elin RJ (2010) Assessment of magnesium status for diagnosis and therapy. Magnes Res 23(4):S194–S198

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Jahnen-Dechent W, Ketteler M (2012) Magnesium basics. Clin Kidney J 5(Suppl 1):i3–i14

    CAS  Article  Google Scholar 

  5. 5.

    Scott D, Blizzard L, Fell J, Giles G, Jones G (2010) Associations between dietary nutrient intake and muscle mass and strength in community-dwelling older adults: the Tasmanian Older Adult Cohort study. J Am Geriatr Soc 58(11):2129–2134

    Article  Google Scholar 

  6. 6.

    Cunningham J, Rodriguez M, Messa P (2012) Magnesium in chronic kidney disease stages 3 and 4 and in dialysis patients. Clin Kidney J 5(Suppl 1):i39–i51

    CAS  Article  Google Scholar 

  7. 7.

    Boyle NB, Lawton C, Dye L (2017) The effects of magnesium supplementation on subjective anxiety and stress—a systematic review. Nutrients 9(5)

  8. 8.

    Verhas M, de la Gueronniere V, Grognet JM, Paternot J, Hermanne A, Van den Winkel P, Gheldof R, Martin P, Fantino M, Rayssiguier Y (2002) Magnesium bioavailability from mineral water. A study in adult men. Eur J Clin Nutr 56(5):442–447

    CAS  Article  Google Scholar 

  9. 9.

    Coudray C, Bellanger J, Vermorel M, Sinaud S, Wils D, Feillet-Coudray C, Brandolini M, Bouteloup-Demange C, Rayssiguier Y (2003) Two polyol, low digestible carbohydrates improve the apparent absorption of magnesium but not of calcium in healthy young men. J Nutr 133(1):90–93

    CAS  Article  Google Scholar 

  10. 10.

    Rude RK (1993) Magnesium metabolism and deficiency. Endocrinol Metab Clin N Am 22(2):377–395

    CAS  Article  Google Scholar 

  11. 11.

    c (1997) National research, DRI (dietary reference intakes) for calcium, phosphorus, magnesium, vitamin D, and fluoride. National Academy Press, Washington

    Google Scholar 

  12. 12.

    Mayer A-M (1997) Historical changes in the mineral content of fruits and vegetables. Br Food J 99(6):207–211

    Article  Google Scholar 

  13. 13.

    Thomas D (2007) The mineral depletion of foods available to us as a nation (1940-2002)—a review of the 6th edition of McCance and Widdowson. Nutr Health 19(1–2):21–55

    CAS  Article  Google Scholar 

  14. 14.

    Fawcett WJ, Haxby EJ, Male DA (1999) Magnesium: physiology and pharmacology. Br J Anaesth 83(2):302–320

    CAS  Article  Google Scholar 

  15. 15.

    Coudray C, Rambeau M, Feillet-Coudray C, Gueux E, Tressol JC, Mazur A, Rayssiguier Y (2005) Study of magnesium bioavailability from ten organic and inorganic Mg salts in Mg-depleted rats using a stable isotope approach. Magnes Res 18(4):215–223

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Bertinato J, Plouffe LJ, Lavergne C, Ly C (2014) Bioavailability of magnesium from inorganic and organic compounds is similar in rats fed a high phytic acid diet. Magnes Res 27(4):175–185

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Schuchardt JP, Hahn A (2017) Intestinal absorption and factors influencing bioavailability of magnesium—an update. Current nutrition and food science 13(4):260–278

    CAS  Article  Google Scholar 

  18. 18.

    Bohn T (2008) Dietary factors influencing magnesium absorption in humans. Curr Nutr Food Sci 4(1):53–72

    CAS  Article  Google Scholar 

  19. 19.

    Schuette SA, Lashner BA, Janghorbani M (1994) Bioavailability of magnesium diglycinate vs magnesium oxide in patients with ileal resection. JPEN J Parenter Enteral Nutr 18(5):430–435

  20. 20.

    Casarrubea M, Sorbera F, Crescimanno G (2009) Multivariate data handling in the study of rat behavior: an integrated approach. Behav Res Methods 41(3):772–781

    Article  Google Scholar 

  21. 21.

    Handley SL, Mithani S (1984) Effects of alpha-adrenoceptor agonists and antagonists in a maze-exploration model of ‘fear’-motivated behaviour. Naunyn Schmiedeberg's Arch Pharmacol 327(1):1–5

    CAS  Article  Google Scholar 

  22. 22.

    Meyer OA, Tilson HA, Byrd WC, Riley MT (1979) A method for the routine assessment of fore- and hindlimb grip strength of rats and mice. Neurobehav Toxicol 1(3):233–236

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Dunham NW, Miya TS (1957) A note on a simple apparatus for detecting neurological deficit in rats and mice. Journal of the American Pharmaceutical Association American Pharmaceutical Association 46(3):208–209

    CAS  Article  Google Scholar 

  24. 24.

    Walker AF, Marakis G, Christie S, Byng M (2003) Mg citrate found more bioavailable than other Mg preparations in a randomised, double-blind study. Magnes Res 16(3):183–191

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Morris ME, LeRoy S, Sutton SC (1987) Absorption of magnesium from orally administered magnesium sulfate in man. J Toxicol Clin Toxicol 25(5):371–382

    CAS  Article  Google Scholar 

  26. 26.

    Bohmer T, Roseth A, Holm H, Weberg-Teigen S, Wahl L (1990) Bioavailability of oral magnesium supplementation in female students evaluated from elimination of magnesium in 24-hour urine. Magnesium and trace elements 9(5):272–278

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Morais JB, Severo JS, Santos LR, de Sousa Melo SR, de Oliveira Santos R, de Oliveira AR, Cruz KJ, do Nascimento Marreiro D (2017) Role of magnesium in oxidative stress in individuals with obesity. Biol Trace Elem Res 176(1):20–26

    CAS  Article  Google Scholar 

  28. 28.

    Murck H, Steiger A (1998) Mg2+ reduces ACTH secretion and enhances spindle power without changing delta power during sleep in men—possible therapeutic implications. Psychopharmacology 137(3):247–252

    CAS  Article  Google Scholar 

  29. 29.

    Laarakker MC, van Lith HA, Ohl F (2011) Behavioral characterization of A/J and C57BL/6J mice using a multidimensional test: association between blood plasma and brain magnesium-ion concentration with anxiety. Physiol Behav 102(2):205–219

    CAS  Article  Google Scholar 

  30. 30.

    Poleszak E, Szewczyk B, Kedzierska E, Wlaz P, Pilc A, Nowak G (2004) Antidepressant- and anxiolytic-like activity of magnesium in mice. Pharmacol Biochem Behav 78(1):7–12

    CAS  Article  Google Scholar 

  31. 31.

    Iezhitsa IN, Spasov AA, Kharitonova MV, Kravchenko MS (2011) Effect of magnesium chloride on psychomotor activity, emotional status, and acute behavioural responses to clonidine, d-amphetamine, arecoline, nicotine, apomorphine, and L-5-hydroxytryptophan. Nutr Neurosci 14(1):10–24

    CAS  Article  Google Scholar 

  32. 32.

    Magaldi M, Moltoni L, Biasi G, Marcolongo R (2000) Changes in intracellular calcium and magnesium ions in the physiopathology of the fybromyalgia syndrome. Minerva Med 91(7–8):137–140

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Abraham GE, Flechas JD (1992) Management of fibromyalgia: rationale for the use of magnesium and malic acid. Journal of Nutritional Medicine 3(1):49–59

    Article  Google Scholar 

  34. 34.

    Dominguez LJ, Barbagallo M, Lauretani F, Bandinelli S, Bos A, Corsi AM, Simonsick EM, Ferrucci L (2006) Magnesium and muscle performance in older persons: the InCHIANTI study. Am J Clin Nutr 84(2):419–426

    CAS  Article  Google Scholar 

  35. 35.

    Jahnen-Dechent W, Ketteler M (2012) Magnesium basics. Clin Kidney J 5(Suppl_1):i3–i14

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nazan Uysal.

Ethics declarations

The experiments were carried out according to the Guiding Principles in the Use of Experimental Animals and approved by the Animal Care and Use Committee of the Dokuz Eylul University, School of Medicine.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Uysal, N., Kizildag, S., Yuce, Z. et al. Timeline (Bioavailability) of Magnesium Compounds in Hours: Which Magnesium Compound Works Best?. Biol Trace Elem Res 187, 128–136 (2019). https://doi.org/10.1007/s12011-018-1351-9

Download citation

Keywords

  • Magnesium acetyl taurate
  • Magnesium malate
  • Magnesium citrate
  • Magnesium oxide
  • Magnesium sulfate
  • Anxiety
  • Brain
  • Muscle