Skip to main content
Log in

Selenium (Na2SeO3) Upregulates Expression of Immune Genes and Blood–Testis Barrier Constituent Proteins of Bovine Sertoli Cell In Vitro

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Sertoli cells were isolated from newborn calves and cultured in a medium supplemented with 0, 0.25, 0.50, 0.75, and 1.00 mg/L of sodium selenite to study their immune stimulatory effect, influence on cell’s viability, and expression of blood–testis barrier proteins (occludin, connexin-43, zonula occluden, E-cadherin) using quantitative PCR and western blot analyses. Results showed that medium supplemented with 0.50 mg/L of selenium significantly (P < 0.05) promoted cell viability, upregulated toll-like receptor gene (TLR4), anti-inflammatory cytokines (IL-4, IL-10, TGFβ1), and expressions of blood–testis barrier proteins, and modulated expressions of pro-inflammatory cytokines (TNF-α, IL-1β, IFN-γ). Sertoli cells grown in culture medium supplemented with 0.25 mg/L of selenium significantly upregulated TLR4, IL-4, IL-10, TGFβ1, and blood–testis barrier proteins compared to the control group. Sodium selenite supplementation at 0.75 and 1.00 mg/L levels was cytotoxic and temporarily downregulated the expression of blood–testis barrier protein within 24 h after culture; however, commencing from 72 h post culture, increased cell viability and upregulation of expression of blood–testis barrier proteins were observed. In conclusion, the results of this study showed that selenium supplementation in the culture medium up to 0.50 mg/L concentration upregulates immune genes and blood–testis barrier constituent proteins of bovine Sertoli cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Combs GF, Gray WP (1998) Chemo preventive agents: selenium. Pharmacol Therapeut 79(3):179–192. https://doi.org/10.1016/S0163-7258(98)00014-X

    Article  CAS  Google Scholar 

  2. Yoshiro S, Yasukazu Y, Takashi A, Kazuhiko T, Etsuo N (2003) Cell death caused by selenium deficiency and protective effect of antioxidants. J Biol Chem 278(41):39428–39434

    Article  CAS  Google Scholar 

  3. Yuhong G, Jiuli Z, Xiaodan H, Guixue Z (2017) Glutathione peroxidase1, selenoprotein K, and selenoprotein H may play important roles in chicken testes in response to selenium deficiency. Biol Trace Elem Res 179:271–276

    Article  CAS  Google Scholar 

  4. Ahmed K, Nagam K, Huang H, Zheng P, Tian Y, Zhang G (2016) Effects of dietary selenium supplementation on seminiferous tubules and SelW, GPx4, LHCGR, and ACE expression in chicken testis. Biol Trace Elem Res 173(1):202–209

    Article  CAS  Google Scholar 

  5. Ebert R, Ulmer M, Zeck S, Meissner-Weigl J, Schneider D, Stopper H, Schupp N, Kassem M, Jacob F (2006) Selenium supplementation restores the antioxidative capacity and prevents cell damage in bone marrow stromal cells in vitro. Stem Cells 24(5):1226–1235. https://doi.org/10.1634/stemcells.2005-0117

    Article  PubMed  CAS  Google Scholar 

  6. Zhang J, Robinson D, Salmon P (2006) A novel function for selenium in biological system: selenite as a highly effective iron carrier for Chinese hamster ovary cell growth and monoclonal antibody production. Biotechnol Bioeng 95(6):1188–1197. https://doi.org/10.1002/bit.21081

    Article  PubMed  CAS  Google Scholar 

  7. Tatemoto H, Muto N, Sunagawa I, Shinjo A, Nakada T (2004) Protection of porcine oocytes against cell damage caused by oxidative stress during in vitro maturation: role of superoxide dismutase activity in porcine follicular fluid. Biol Reprod 71(4):1150–1157. https://doi.org/10.1095/biolreprod.104.029264

    Article  PubMed  CAS  Google Scholar 

  8. Zheng C, Bing S, Feibo X, Yunfeng L, Yanfei L, Yanzhu Z (2017) Protective effect of selenium on aflatoxin B1-induced testicular toxicity in mice. Biol Trace Elem Res 180:233–238

    Article  CAS  Google Scholar 

  9. Mario SM, Lucia RR (2011) Activity of selenium on cell proliferation, cytotoxicity, and apoptosis and on the expression of CASP9, BCL-XL and APC in intestinal adenocarcinoma cells. Mutat Res 715(1-2):7–12. https://doi.org/10.1016/j.mrfmmm.2011.06.015

    Article  CAS  Google Scholar 

  10. Pervez AK, Tingru P, Na W, Zijiang Y, Ci L, Shu L (2017) Selenium deficiency induces autophagy in immune organs of chickens. Biol Trace Elem Res 177:159–168

    Article  CAS  Google Scholar 

  11. Gary EO, Winfrey VP, NagDas SK, Hill KE, Burk RF (2007) Apolipoprotein E receptor-2 (ApoER2) mediates selenium uptake from selenoprotein P by the mouse testis. J Biol Chem 282:12290–12297

    Article  CAS  Google Scholar 

  12. Hogan JS, Smith KL, Weiss WP, Todhunter DA, Schockey WL (1990) Relationships among vitamin E, selenium, and bovine blood neutrophils. J Dairy Sci 73(9):2372–2378. https://doi.org/10.3168/jds.S0022-0302(90)78920-5

    Article  PubMed  CAS  Google Scholar 

  13. Grasso PJ, Scholz RW, Erskine RJ, Eberhart RJ (1990) Phagocytosis, bactericidal activity, and oxidative metabolism of milk neutrophils from dairy cows fed selenium-supplemented and selenium-deficient diets. Am J Vet Res 51(2):269–274

    PubMed  CAS  Google Scholar 

  14. Maddox JF, Aherne KM, Reddy CC, Sordillo LM (1999) Increased neutrophil adherence and adhesion molecule mRNA expression in endothelial cells during selenium deficiency. J Leukoc Biol 65(5):658–664. https://doi.org/10.1002/jlb.65.5.658

    Article  PubMed  CAS  Google Scholar 

  15. Cao Y, Maddox JF, Mastro AM, Scholz RW, Hildenbrandt G, Reddy CC (1992) Selenium deficiency alters the lipoxygenase pathway and mitogenic response in bovine lymphocytes. J Nutr 122(11):2121–2127. https://doi.org/10.1093/jn/122.11.2121

    Article  PubMed  CAS  Google Scholar 

  16. Allison RD, Laven RA (2000) Effect of vitamin E supplementation on the health and fertility of dairy cows: a review. Vet Rec 147(25):703–708

    PubMed  CAS  Google Scholar 

  17. Manuela S, Heidi F, Auke B, Alexander S, Helga W, Fred S, Christine N, Manuel JD, Axel W, Martin HA, Wolfgang W, Fulvio U, Antonella R, Marek M, Matilde M, Marcus C (2009) Mitochondrial glutathione peroxidase 4 disruption causes male infertility. FASEB J 23:3233–3242

    Article  CAS  Google Scholar 

  18. Behne D, Hofer T, von Berswordt-Wallrabe R, Elger W (1982) Selenium in the testis of the rat: studies on its regulation and its importance for the organism. J Nutr 112(9):1682–1687. https://doi.org/10.1093/jn/112.9.1682

    Article  PubMed  CAS  Google Scholar 

  19. Behne D, Weiler H, Kyriakopoulos A Effects of selenium deficiency on testicular morphology and function in rats. J Reprod Fertil 106:291–297

  20. Prabhu KS, Zamamiri-Davis F, Stewart JB, Thompson JT, Sordillo LM, Reddy CC (2002) Selenium deficiency increases the expression of inducible nitric oxide synthase in RAW 264.7 macrophages: role of nuclear factor-kappa B in up regulation. Biochem J 366(1):203–209. https://doi.org/10.1042/bj20020256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Yun CH, Yang JS, Kang SS, Yang Y, Cho JH, Son CG, Han SH (2007) NF-κB signaling pathway not IFN-β/STAT1, is responsible for the selenium suppression of LPS-induced nitric production. Int Immunopharmacol 7(9):1192–1198. https://doi.org/10.1016/j.intimp.2007.05.002

    Article  PubMed  CAS  Google Scholar 

  22. Nan L, Tao W, Daishu H (2012) Structural, cellular and molecular aspects of immune privilege in the testis. Front Immunol 3(152):1–12

    Google Scholar 

  23. Dufour JM, Rajotte RV, Korbutt GS, Emerich DF (2003b) Harnessing the immunomodulatory properties of Sertoli cells to enable xenotransplantation in type I diabetes. Immunol Investig 32(4):275–297. https://doi.org/10.1081/IMM-120025106

    Article  CAS  Google Scholar 

  24. Eddy K, Rosalina V, Salustiano R, Trish B (2012) Role for endogenous estrogen in prepubertal Sertoli cell maturation. Anim Reprod Sci 135:106–112

    Article  CAS  Google Scholar 

  25. Mital P, Kaur G, Dufour JM (2010) Immunoprotective sertoli cells: making allogeneic and xenogeneic transplantation feasible. Reproduction 139(3):495–504. https://doi.org/10.1530/REP-09-0384

    Article  PubMed  CAS  Google Scholar 

  26. Meinhardt A, Hedger MP (2011) Immunological, paracrine and endocrine aspects of testicular immune privilege. Mol Cell Endocrinol 335(1):60–68. https://doi.org/10.1016/j.mce.2010.03.022

    Article  PubMed  CAS  Google Scholar 

  27. Ogawa T, Dobrinski I, Avarbock MR, Brinster RL (2000) Transplantation of male germ line stem cells restores fertility in infertile mice. Nature Med 6(1):29–34. https://doi.org/10.1038/71496

    Article  PubMed  CAS  Google Scholar 

  28. Mruk DD, Cheng CY (2011) An in vitro system to study Sertoli cell blood-testis barrier dynamics. Methods Mol Biol 763:237–252. https://doi.org/10.1007/978-1-61779-191-8_16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Linlin S, Dolores DM, Wing-Yee L, Will ML, Cheng CY (2011) P-glycoprotein regulates blood–testis barrier dynamics via its effects on the occludin/zonula occludens 1 (ZO-1) protein complex mediated by focal adhesion kinase (FAK). Proc Natl Acad Sci U S A (PNAS) 108(49):19623–19628

    Article  Google Scholar 

  30. Zheng P, Hu PF, Tian YG, Huang H, Zhang GX (2013) Isolation, purification and cryopreservation of cells from neonatal bovine testis. J Northeast Agric Univ 20(1):37–42

    CAS  Google Scholar 

  31. Tang K, Wang L, Jin Y, Yang W, Yang L (2017) GDF9 affects the development and tight junction functions of immature bovine Sertoli cells. Reprod Dom Anim 52(4):640–648. https://doi.org/10.1111/rda.12960

    Article  CAS  Google Scholar 

  32. Davoodi SRF, Cooke ACC, Fernandes BI, Cappellozza JLM, Vasconcelos RLA, Cerri (2015) Expression of estrus modifies the gene expression profile in reproductive tissues on day 19 of gestation in beef cows. Theriogenology 85(4):645–655. https://doi.org/10.1016/j.theriogenology.2015.10.002

    Article  PubMed  CAS  Google Scholar 

  33. Yamane D, Kato K, Tohya Y, Akashi H (2008) The relationship between the viral RNA level and upregulation of innate immunity in spleen of cattle persistently infected with bovine viral diarrhea virus. Vet Microbiol 129(1-2):69–79. https://doi.org/10.1016/j.vetmic.2007.11.004

    Article  PubMed  CAS  Google Scholar 

  34. Eva E, Enrique G, David M, Susana C, Silvia P, Jesús O, Peynot N, Giraud-Delville C, Caamaño JN, Sandra O, Duranthon V, Muñoz M (2015) Expression and localization of interleukin 1 beta and interleukin 1 receptor (type I) in the bovine endometrium and embryo. J Reprod Immunol 110:1–13

    Article  CAS  Google Scholar 

  35. Seo KS, Sang UL, Yong HP, William CD, Lawrence KF (2007) Gregory AB, long-term staphylococcal enterotoxin C1 exposure induces soluble factor-mediated immunosuppression by bovine CD4+and CD8+ T cells. Infect Immun 75(1):260–269. https://doi.org/10.1128/IAI.01358-06

    Article  PubMed  CAS  Google Scholar 

  36. Sekaran M, Koon CY, Jack BC, Arokiasamy VR, Kum TW, Ikram SI, Rajes Q (2008) Quantification of zonula Occludens-1 mRNA expression in cultured bovine retinal endothelial cells, using SYBR green real-time PCR. Biomed Res 19(2):117–124

    Google Scholar 

  37. Daniel JM, Eckert JJ, Giovanna L, Veronique DJS, Dermot M, Cesare G, Jean-Paul R, Tom PF (2003) Tight junction messenger RNA expression levels in bovine embryos are dependent upon the ability to compact and in vitro culture methods. Biol Reprod 68:1394–1402

    Article  CAS  Google Scholar 

  38. Yao T, Asayama Y (2017) Animal-cell culture media: history, characteristics, and current issues. Reprod Med Biol 16(2):99–117. https://doi.org/10.1002/rmb2.12024

    Article  PubMed  PubMed Central  Google Scholar 

  39. Vellaisamy S, Justin T, Mindy YA, Elizabeth M (2012) Selenium (sodium selenite) causes cytotoxicity and apoptotic mediated cell death in PLHC-1fish cell line through DNA and mitochondrial membrane potential damage. Ecotoxicol Environ Saf 87:80–88

    Google Scholar 

  40. Katarzyna Z, Przemyslaw S, Justyna R, Wojciech RJ (2012) Effect of selenium on animal health. J Elem 2012:329–340

    Google Scholar 

  41. Jadwiga DW, Izabela KKN, Piotr SSF, Monika K, Elżbieta A (2011) Study of the effect of Selol and sodium selenite on HeLa cells in vitro. CHEMIK 65(2):105–114

    Google Scholar 

  42. Anna H, Martin W, Carolin SK, Georg HL, Martin B, Sabine K, Lutz K (2011) Reduced numbers of sertoli, germ, and spermatogonial stem cells in impaired spermatogenesis. Mod Pathol 24:1380–1389

    Article  Google Scholar 

  43. Stefanie DS, Adelheid DK, Douglas B, Max P, Luc P (2008) The toll-like receptor-4 (TLR-4) pathway and its possible role in the pathogenesis of Escherichia coli mastitis in dairy cattle. Vet Res, BioMed Central 39(1):1–23

    Google Scholar 

  44. Lu YC, Yeh WC, Ohashi PS (2008) LPS/TLR4 signal transduction pathway. Cytokine 42(2):145–151. https://doi.org/10.1016/j.cyto.2008.01.006

    Article  PubMed  CAS  Google Scholar 

  45. Rainard P, Riollet C (2006) Innate immunity of the bovine mammary gland. Vet Res 37(3):369–400. https://doi.org/10.1051/vetres:2006007

    Article  PubMed  CAS  Google Scholar 

  46. Anna R, Donatella S, Roberta G, Andrea F, Sigfrido S, Fioretta P, Paola DC, Elio Z, Antonio F (2006) Sertoli cells initiate testicular innate immune responses through TLR activation. J Immunol 177(10):7122–7130

    Article  Google Scholar 

  47. Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5(10):987–995. https://doi.org/10.1038/ni1112

    Article  PubMed  CAS  Google Scholar 

  48. Eizirik DL, Mandrup-Poulsen T (2001) A choice of death—the signal transduction of immune mediated beta-cell apoptosis. Diabetologia 44(12):2115–2133. https://doi.org/10.1007/s001250100021

    Article  PubMed  CAS  Google Scholar 

  49. Ronn SG, Billestrup N, Mandrup-Poulsen T (2007) Diabetes and suppressors of cytokine signaling proteins. Diabetes 56(2):541–548. https://doi.org/10.2337/db06-1068

    Article  PubMed  CAS  Google Scholar 

  50. Cnop M, Welsh N, Jonas JC, Jorns A, Lenzen S, Eizirik DL (2005) Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 54:97–107

    Article  Google Scholar 

  51. Kaminski A, Kaminski E, Morgan NG (2007) Pre-incubation with interleukin-4 mediates a direct protective effect against the loss of pancreatic beta-cell viability induced by pro-inflammatory cytokines. Clinical Experimental Immunology 148(3):583–588. https://doi.org/10.1111/j.1365-2249.2007.03375.x

    Article  PubMed  CAS  Google Scholar 

  52. Peter RH, Marla JB (2008) The influence of selenium on immune responses. Mol Nutr Food Res 52(11):1273–1280

    Article  CAS  Google Scholar 

  53. Huang Z, Aaron HR, Peter RH (2012) The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 16(7):705–743. https://doi.org/10.1089/ars.2011.4145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Caroline SB, Francis M, Janet AK, Francis A, Nicola ML, Anthony CH, John RA, Malcolm JJ (2004) An increase in selenium intake improves immune function and polio virus handling in adults with marginal selenium status. Am J Clin Nutr 80:154–162

    Article  Google Scholar 

  55. Kleber LAS, Ewa GC, Matthias E, Sigurd L (2008) Interaction between pro-inflammatory and anti-inflammatory cytokines in insulin-producing cells. J Endocrinol 197:139–150

    Article  CAS  Google Scholar 

  56. Plunkett JA, Yu CG, Easton JM, Bethea JR, Yezierski RP (2001) Effects of interleukin-10 (IL-10) on pain behavior and gene expression following excitotoxic spinal cord injury in the rat. Exp Neurol 168(1):144–154. https://doi.org/10.1006/exnr.2000.7604

    Article  PubMed  CAS  Google Scholar 

  57. Paintlia AS, Paintlia MK, Singh I, Singh AK (2006) IL-4-induced peroxisome proliferator-activated receptor gamma activation inhibits NF-kappaB trans activation in central nervous system (CNS) glial cells and protects oligodendrocyte progenitors under neuroinflammatory disease conditions: implication for CNS-demyelinating diseases. J Immunol 176:4385–4398

    Article  PubMed  CAS  Google Scholar 

  58. Mandrup-Poulsen T (1996) The role of interleukin-1 in the pathogenesis of IDDM. Diabetologia 39(9):1005–1029. https://doi.org/10.1007/BF00400649

    Article  PubMed  CAS  Google Scholar 

  59. Mandrup-Poulsen T (2003a) Apoptotic signal transduction pathways in diabetes. Biochem Pharmacol 66(8):1433–1440. https://doi.org/10.1016/S0006-2952(03)00494-5

    Article  PubMed  CAS  Google Scholar 

  60. Mandrup-Poulsen T (2003b) Beta cell death and protection. Ann N Y Acad Sci 1005(1):32–42. https://doi.org/10.1196/annals.1288.005

    Article  PubMed  Google Scholar 

  61. Michael HJ, Franziska U, Stephanie K, Lars A, Charlotte GJ, Lars E, Bente G, Soren S (2014) The selenium metabolite methylselenol regulates the expression of ligands that trigger immune activation through the lymphocyte receptor NKG2D. J Biol Chem 289(45):31576–31590

    Article  CAS  Google Scholar 

  62. Zengyang P, Li H, Ying G, Yipeng J, Degui L (2010) Sodium selenite inhibits the expression of VEGF, TGFβ1 and IL-6 induced by LPS in human PC3 cells via TLR4-NF-KB signaling blockage. Int Immunopharmacol 10:50–56

    Article  CAS  Google Scholar 

  63. Xinrui T, Zhuola L, Bo N, Jianlin Z, Thian KT, So RL, Ye Z, CHH D, Guoping Z (2011) E-cadherin/β-catenin complex and the epithelial barrier. J Biomed Biotechnol 2011:1–6. https://doi.org/10.1155/2011/567305

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by National Key R&D Program of China (2017YFD0501903) and Heilongjiang Natural Science Foundation of China (C2017033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guixue Zhang.

Ethics declarations

All procedures involving animals in this study were approved by Northeast Agricultural University ethical committee on animal care and use.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adegoke, E., Wang, X., Wang, H. et al. Selenium (Na2SeO3) Upregulates Expression of Immune Genes and Blood–Testis Barrier Constituent Proteins of Bovine Sertoli Cell In Vitro. Biol Trace Elem Res 185, 332–343 (2018). https://doi.org/10.1007/s12011-018-1248-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-018-1248-7

Keywords

Navigation