Skip to main content

Advertisement

Log in

Identification and Characterization of Cadmium-Related Genes in Liver Carcinoma

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Evidence indicates that exposure to heavy trace element might be a risk factor for liver carcinoma. Cadmium has been supposed to be a carcinogen that has a correlation with the risk of a number of cancers, including liver cancer. However, the mechanisms underlying Cadmium-induced malignant transformation in liver cells are not fully understood. In the present study, we aimed to screen the differentially expressed genes (DEGs) that might play a role in both the Cadmium-related liver cell transformation and the development of liver cancer. Microarray-based gene expression profiles concerning liver carcinoma vs non-cancerous tissue (GSE64041) and Cadmium-treated liver cells vs controls (GSE8865 and GSE31286), respectively, were retrieved from Gene Expression Omnibus (GEO) database. Then, DEGs of each profile were calculated and screened. The intersection of each DEGs was obtained by Venn analysis. Afterwards, the possible roles of the selected genes in cancer development were evaluated by using Oncomine database and TCGA cohort analysis. Consequently, three DEGs, LRAT, SLC7A11, and ITGA2, were selected for further analysis. SLC7A11 and ITGA2, but not LRAT, were upregulated in liver cancer compared with those in normal tissues, respectively. After using a TCGA cohort analysis, results failed to show a significant correlation between SLC7A11 or ITGA2 expression and clinical parameters. However, the survival analysis showed that patients with high expression levels of SLC7A11 had a shorter overall survival time relative to those of the patients with low levels. In conclusion, SLC7A11 and ITGA2 might play a role in the Cadmium-induced liver cell damage or transformation, and the development of liver carcinoma. SLC7A11 might be a prognostic factor for patients with liver carcinoma. Future validation experiments are needed to verify the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lin H, Ha NB, Ahmed A, Ayoub W, Daugherty TJ, Lutchman GA, Garcia G, Nguyen MH (2013) Both HCV and HBV are major causes of liver cancer in Southeast Asians. J Immigr Minor Health 15(6):1023–1029. doi:10.1007/s10903-013-9871-z

    Article  PubMed  Google Scholar 

  2. Moudgil V, Redhu D, Dhanda S, Singh J (2013) A review of molecular mechanisms in the development of hepatocellular carcinoma by aflatoxin and hepatitis B and C viruses. J Environ Pathol, Toxicol Oncol 32(2):165–175

    Article  CAS  Google Scholar 

  3. Niu ZS, Niu XJ, Wang WH (2016) Genetic alterations in hepatocellular carcinoma: an update. World J Gastroenterol 22(41):9069–9095. doi:10.3748/wjg.v22.i41.9069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hong YS, Song KH, Chung JY (2014) Health effects of chronic arsenic exposure. J Prev Med Public Health 47(5):245–252. doi:10.3961/jpmph.14.035

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hsu LI, Wang YH, Hsieh FI, Yang TY, Wen-Juei Jeng R, Liu CT, Chen CL, Hsu KH, Chiou HY, Wu MM, Chen CJ (2016) Effects of arsenic in drinking water on risk of hepatitis or cirrhosis in persons with and without chronic viral hepatitis. Clin Gastroenterol Hepatol 14(9):1347–1355e4. doi:10.1016/j.cgh.2016.03.043

    Article  CAS  PubMed  Google Scholar 

  6. Garry MR, Santamaria AB, Williams AL, DeSesso JM (2015) In utero arsenic exposure in mice and early life susceptibility to cancer. Regul Toxicol Pharmacol 73(1):378–390. doi:10.1016/j.yrtph.2015.07.023

    Article  CAS  PubMed  Google Scholar 

  7. Fujishiro H, Yano Y, Takada Y, Tanihara M, Himeno S (2012) Roles of ZIP8, ZIP14, and DMT1 in transport of cadmium and manganese in mouse kidney proximal tubule cells. Metallomics 4(7):700–708. doi:10.1039/c2mt20024d

    Article  CAS  PubMed  Google Scholar 

  8. Koedrith P, Kim H, Weon JI, Seo YR (2013) Toxicogenomic approaches for understanding molecular mechanisms of heavy metal mutagenicity and carcinogenicity. Int J Hyg Environ Health 216(5):587–598. doi:10.1016/j.ijheh.2013.02.010

    Article  CAS  PubMed  Google Scholar 

  9. Garcia-Esquinas E, Pollan M, Tellez-Plaza M, Francesconi KA, Goessler W, Guallar E, Umans JG, Yeh J, Best LG, Navas-Acien A (2014) Cadmium exposure and cancer mortality in a prospective cohort: the strong heart study. Environ Health Perspect 122(4):363–370. doi:10.1289/ehp.1306587

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen C, Xun P, Nishijo M, He K (2016) Cadmium exposure and risk of lung cancer: a meta-analysis of cohort and case-control studies among general and occupational populations. J Expo Sci Environ Epidemiol 26(5):437–444. doi:10.1038/jes.2016.6

    Article  CAS  PubMed  Google Scholar 

  11. Song J, Luo H, Yin X, Huang G, Luo S, Lin du R, Yuan DB, Zhang W, Zhu J (2015) Association between cadmium exposure and renal cancer risk: a meta-analysis of observational studies. Sci Rep 5:17976. doi:10.1038/srep17976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang L, Zhu Y, Hao R, Shao M, Luo Y (2016) Cadmium levels in tissue and plasma as a risk factor for prostate carcinoma: a meta-analysis. Biol Trace Elem Res 172(1):86–92. doi:10.1007/s12011-015-0576-0

    Article  CAS  PubMed  Google Scholar 

  13. Ledda C, Loreto C, Zammit C, Marconi A, Fago L, Matera S, Costanzo V, Fuccio Sanza G, Palmucci S, Ferrante M, Costa C, Fenga C, Biondi A, Pomara C, Rapisarda V (2017) Non-infective occupational risk factors for hepatocellular carcinoma: a review (review). Mol Med Rep 15(2):511–533. doi:10.3892/mmr.2016.6046

    Article  CAS  PubMed  Google Scholar 

  14. Franken C, Koppen G, Lambrechts N, Govarts E, Bruckers L, Den Hond E, Loots I, Nelen V, Sioen I, Nawrot TS, Baeyens W, Van Larebeke N, Boonen F, Ooms D, Wevers M, Jacobs G, Covaci A, Schettgen T, Schoeters G (2017) Environmental exposure to human carcinogens in teenagers and the association with DNA damage. Environ Res 152:165–174. doi:10.1016/j.envres.2016.10.012

    Article  CAS  PubMed  Google Scholar 

  15. Suzuki M, Takeda S, Teraoka-Nishitani N, Yamagata A, Tanaka T, Sasaki M, Yasuda N, Oda M, Okano T, Yamahira K, Nakamura Y, Kobayashi T, Kino K, Miyazawa H, Waalkes MP, Takiguchi M (2017) Cadmium-induced malignant transformation of rat liver cells: potential key role and regulatory mechanism of altered apolipoprotein E expression in enhanced invasiveness. Toxicology 382:16–23. doi:10.1016/j.tox.2017.03.014

    Article  CAS  PubMed  Google Scholar 

  16. Shimoda R, Achanzar WE, Qu W, Nagamine T, Takagi H, Mori M, Waalkes MP (2003) Metallothionein is a potential negative regulator of apoptosis. Toxicol Sci 73(2):294–300. doi:10.1093/toxsci/kfg095

    Article  CAS  PubMed  Google Scholar 

  17. Qu W, Fuquay R, Sakurai T, Waalkes MP (2006) Acquisition of apoptotic resistance in cadmium-induced malignant transformation: specific perturbation of JNK signal transduction pathway and associated metallothionein overexpression. Mol Carcinog 45(8):561–571. doi:10.1002/mc.20185

    Article  CAS  PubMed  Google Scholar 

  18. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis S, Soboleva A (2013) NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res 41(D1):D991–D995. doi:10.1093/nar/gks1193

    Article  CAS  PubMed  Google Scholar 

  19. Yu JW, Mai W, Cui YL, Kong LY (2016) Genes and pathways identified in thyroid carcinoma based on bioinformatics analysis. Neoplasma 63(4):559–568. doi:10.4149/neo_2016_409

    Article  CAS  PubMed  Google Scholar 

  20. Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, Briggs BB, Barrette TR, Anstet MJ, Kincead-Beal C, Kulkarni P, Varambally S, Ghosh D, Chinnaiyan AM (2007) Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 9(2):166–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lenci RE, Rachakonda PS, Kubarenko AV, Weber AN, Brandt A, Gast A, Sucker A, Hemminki K, Schadendorf D, Kumar R (2012) Integrin genes and susceptibility to human melanoma. Mutagenesis 27(3):367–373. doi:10.1093/mutage/ger090

    Article  CAS  PubMed  Google Scholar 

  22. Liu X, Liang Z, Gao K, Li H, Zhao G, Wang S, Fang J (2016) MicroRNA-128 inhibits EMT of human osteosarcoma cells by directly targeting integrin alpha2. Tumour Biol 37(6):7951–7957. doi:10.1007/s13277-015-4696-0

    Article  CAS  PubMed  Google Scholar 

  23. Ferraro A, Boni T, Pintzas A (2014) EZH2 regulates cofilin activity and colon cancer cell migration by targeting ITGA2 gene. PLoS One 9(12):e115276. doi:10.1371/journal.pone.0115276

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ding W, Fan XL, Xu X, Huang JZ, Xu SH, Geng Q, Li R, Chen D, Yan GR (2015) Epigenetic silencing of ITGA2 by MiR-373 promotes cell migration in breast cancer. PLoS One 10(8):e0135128. doi:10.1371/journal.pone.0135128

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shaikhibrahim Z, Lindstrot A, Buettner R, Wernert N (2011) Analysis of laser-microdissected prostate cancer tissues reveals potential tumor markers. Int J Mol Med 28(4):605–611. doi:10.3892/ijmm.2011.746

    CAS  PubMed  Google Scholar 

  26. Wong KF, Liu AM, Hong W, Xu Z, Luk JM (2016) Integrin alpha2beta1 inhibits MST1 kinase phosphorylation and activates yes-associated protein oncogenic signaling in hepatocellular carcinoma. Oncotarget 7(47):77683–77695. doi:10.18632/oncotarget.12760

    Article  PubMed  PubMed Central  Google Scholar 

  27. Drabovich AP, Pavlou MP, Schiza C, Diamandis EP (2016) Dynamics of protein expression reveals primary targets and secondary messengers of estrogen receptor alpha signaling in MCF-7 breast cancer cells. Mol Cel Proteomics 15(6):2093–2107. doi:10.1074/mcp.M115.057257

    Article  CAS  Google Scholar 

  28. Robert SM, Buckingham SC, Campbell SL, Robel S, Holt KT, Ogunrinu-Babarinde T, Warren PP, White DM, Reid MA, Eschbacher JM, Berens ME, Lahti AC, Nabors LB, Sontheimer H (2015) SLC7A11 expression is associated with seizures and predicts poor survival in patients with malignant glioma. Sci Transl Med 7(289):289ra286. doi:10.1126/scitranslmed.aaa8103

    Article  Google Scholar 

  29. Polewski MD, Reveron-Thornton RF, Cherryholmes GA, Marinov GK, Cassady K, Aboody KS (2016) Increased expression of system xc- in glioblastoma confers an altered metabolic state and Temozolomide resistance. Mol Cancer Res 14(12):1229–1242. doi:10.1158/1541-7786.MCR-16-0028

    Article  CAS  PubMed  Google Scholar 

  30. Wang F, Yang Y (2014) Suppression of the xCT-CD44v antiporter system sensitizes triple-negative breast cancer cells to doxorubicin. Breast Cancer Res Treat 147(1):203–210. doi:10.1007/s10549-014-3068-6

    Article  CAS  PubMed  Google Scholar 

  31. Drayton RM, Dudziec E, Peter S, Bertz S, Hartmann A, Bryant HE, Catto JW (2014) Reduced expression of miRNA-27a modulates cisplatin resistance in bladder cancer by targeting the cystine/glutamate exchanger SLC7A11. Clin Cancer Res 20(7):1990–2000. doi:10.1158/1078-0432.CCR-13-2805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shiozaki A, Iitaka D, Ichikawa D, Nakashima S, Fujiwara H, Okamoto K, Kubota T, Komatsu S, Kosuga T, Takeshita H, Shimizu H, Nako Y, Sasagawa H, Kishimoto M, Otsuji E (2014) xCT, component of cysteine/glutamate transporter, as an independent prognostic factor in human esophageal squamous cell carcinoma. J Gastroenterol 49(5):853–863. doi:10.1007/s00535-013-0847-5

    Article  CAS  PubMed  Google Scholar 

  33. Kinoshita H, Okabe H, Beppu T, Chikamoto A, Hayashi H, Imai K, Mima K, Nakagawa S, Ishimoto T, Miyake K, Yokoyama N, Ishiko T, Baba H (2013) Cystine/glutamic acid transporter is a novel marker for predicting poor survival in patients with hepatocellular carcinoma. Oncol Rep 29(2):685–689. doi:10.3892/or.2012.2162

    Article  CAS  PubMed  Google Scholar 

  34. Sasaki H, Sato H, Kuriyama-Matsumura K, Sato K, Maebara K, Wang H, Tamba M, Itoh K, Yamamoto M, Bannai S (2002) Electrophile response element-mediated induction of the cystine/glutamate exchange transporter gene expression. J Biol Chem 277(47):44765–44771. doi:10.1074/jbc.M208704200

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Huang, Y., Zhu, Y. et al. Identification and Characterization of Cadmium-Related Genes in Liver Carcinoma. Biol Trace Elem Res 182, 238–247 (2018). https://doi.org/10.1007/s12011-017-1106-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-017-1106-z

Keywords

Navigation