Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: Suppression of the xCT–CD44v antiporter system sensitizes triple-negative breast cancer cells to doxorubicin

  • Brief Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

This article was retracted on 01 May 2015

Abstract

The xCT antiporter is known to be upregulated in 30 % of triple-negative breast cancer (TNBC) cell lines. The xCT–CD44 variant (CD44v) system regulates the levels of reactive oxygen species (ROS) in cancer cells and promotes tumor growth. Here, the role of this antiporter system in relation to chemotherapy was evaluated. MDA-MB-231 and MDA-MB-436 cells were transfected with lentiviral vectors expressing short hairpin RNA against xCT or CD44v. Following doxorubicin treatment, cellular proliferation was monitored, ROS were measured, and intracellular levels of cysteine and glutathione (GSH) were determined using liquid chromatography–mass spectrometry. A TNBC orthotopic tumor model was used to evaluate the impact of xCT–CD44v inhibition on doxorubicin efficacy in vivo. Doxorubicin treatment of TNBC cells caused increased expression of xCT through upregulation of CD44v. Consequently, the intracellular uptake of cystine increased, enabling rapid synthesis of GSH, and neutralization of doxorubicin-induced ROS. Suppression of xCT or CD44v impaired the defense against drug-induced oxidative stress, thereby sensitizing cells to doxorubicin. The importance of the xCT–CD44v in supporting tumor growth during doxorubicin treatment was also demonstrated in an in vivo tumor model of TNBC. These findings suggest that the antiporter system could serve as a target for increasing the anticancer efficacy of conventional therapy in patients with TNBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Cleator S, Heller W, Coombes RC (2007) Triple-negative breast cancer: therapeutic options. Lancet Oncol 8(3):235–244. doi:10.1016/S1470-2045(07)70074-8

    Article  PubMed  Google Scholar 

  2. Duffy MJ, McGowan PM, Crown J (2012) Targeted therapy for triple-negative breast cancer: where are we? Int J Cancer 131(11):2471–2477. doi:10.1002/ijc.27632

    Article  CAS  PubMed  Google Scholar 

  3. Weigelt B, Reis JS (2009) Histological and molecular types of breast cancer: is there a unifying taxonomy? Nat Rev Clin Oncol 6(12):718–730. doi:10.1038/nrclinonc.2009.166

    Article  CAS  PubMed  Google Scholar 

  4. Isakoff SJ (2010) Triple-negative breast cancer role of specific chemotherapy agents. Cancer J 16(1):53–61. doi:10.1097/PPO.0b013e3181d24ff7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Bristol IJ, Woodward WA, Strom EA, Cristofanilli M, Domain D, Singletary SE, Perkins GH, Oh JL, Yu TK, Terrefe W, Sahin AA, Hunt KK, Hortobagyi GN, Buchholz TA (2008) Locoregional treatment outcomes after multimodality management of inflammatory breast cancer. Int J Radiat Oncol 72(2):474–484. doi:10.1016/j.ijrobp.2008.01.039

    Article  Google Scholar 

  6. Gelmon K, Dent R, Mackey JR, Laing K, McLeod D, Verma S (2012) Targeting triple-negative breast cancer: optimising therapeutic outcomes. Ann Oncol 23(9):2223–2234. doi:10.1093/annonc/mds067

    Article  CAS  PubMed  Google Scholar 

  7. Timmerman LA, Holton T, Yuneva M, Louie RJ, Padro M, Daemen A, Hu M, Chan DA, Ethier SP, van’t Veer LJ, Polyak K, McCormick F, Gray JW (2013) Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target. Cancer Cell 24(4):450–465. doi:10.1016/j.ccr.2013.08.020

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Lo M, Ling V, Wang YZ, Gout PW (2008) The xc- cystine/glutamate antiporter: a mediator of pancreatic cancer growth with a role in drug resistance. Br J Cancer 99(3):464–472. doi:10.1038/sj.bjc.6604485

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8(7):579–591. doi:10.1038/nrd2803

    Article  CAS  PubMed  Google Scholar 

  10. Nagano O, Okazaki S, Saya H (2013) Redox regulation in stem-like cancer cells by CD44 variant isoforms. Oncogene 32(44):5191–5198. doi:10.1038/onc.2012.638

    Article  CAS  PubMed  Google Scholar 

  11. Dall P, Heider KH, Sinn HP, Skroch-Angel P, Adolf G, Kaufmann M, Herrlich P, Ponta H (1995) Comparison of immunohistochemistry and RT-PCR for detection of CD44v-expression, a new prognostic factor in human breast cancer. Int J Cancer 60(4):471–477. doi:10.1002/ijc.2910600408

    Article  CAS  PubMed  Google Scholar 

  12. Ishimoto T, Nagano O, Yae T, Tamada M, Motohara T, Oshima H, Oshima M, Ikeda T, Asaba R, Yagi H, Masuko T, Shimizu T, Ishikawa T, Kai K, Takahashi E, Imamura Y, Baba Y, Ohmura M, Suematsu M, Baba H, Saya H (2011) CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(−) and thereby promotes tumor growth. Cancer Cell 19(3):387–400. doi:10.1016/j.ccr.2011.01.038

    Article  CAS  PubMed  Google Scholar 

  13. Yoshikawa M, Tsuchihashi K, Ishimoto T, Yae T, Motohara T, Sugihara E, Onishi N, Masuko T, Yoshizawa K, Kawashiri S, Mukai M, Asoda S, Kawana H, Nakagawa T, Saya H, Nagano O (2013) xCT inhibition depletes CD44v-expressing tumor cells that are resistant to EGFR-targeted therapy in head and neck squamous cell carcinoma. Cancer Res 73(6):1855–1866. doi:10.1158/0008-5472.CAN-12-3609-T

    Article  CAS  PubMed  Google Scholar 

  14. Ravid A, Rocker D, Machlenkin A, Rotem C, Hochman A, Kessler-Icekson G, Liberman UA, Koren R (1999) 1,25-Dihydroxyvitamin D3 enhances the susceptibility of breast cancer cells to doxorubicin-induced oxidative damage. Cancer Res 59(4):862–867

    CAS  PubMed  Google Scholar 

  15. Wang J, Yi J (2008) Cancer cell killing via ROS To increase or decrease, that is the question. Cancer Biol Ther 7(12):1875–1884. doi:10.4161/cbt.7.12.7067

    Article  CAS  PubMed  Google Scholar 

  16. Velimezi G, Liontos M, Vougas K, Roumeliotis T, Bartkova J, Sideridou M, Dereli-Oz A, Kocylowski M, Pateras IS, Evangelou K, Kotsinas A, Orsolic I, Bursac S, Cokaric-Brdovcak M, Zoumpourlis V, Kletsas D, Papafotiou G, Klinakis A, Volarevic S, Gu W, Bartek J, Halazonetis TD, Gorgoulis VG (2013) Functional interplay between the DNA-damage-response kinase ATM and ARF tumour suppressor protein in human cancer. Nat Cell Biol 15(8):967–977. doi:10.1038/ncb2795

    Article  CAS  PubMed  Google Scholar 

  17. Yang Y, Wolfram J, Shen J, Zhao Y, Fang X, Shen H, Ferrari M (2013) Live-cell single-molecule imaging reveals clathrin and caveolin-1 dependent docking of SMAD4 at the cell membrane. FEBS Lett 587(24):3912–3920. doi:10.1016/j.febslet.2013.10.041

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Maddocks ODK, Berkers CR, Mason SM, Zheng L, Blyth K, Gottlieb E, Vousden KH (2013) Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 493(7433):542–546. doi:10.1038/nature11743

    Article  CAS  PubMed  Google Scholar 

  19. Shih AY, Murphy TH (2001) xCT cystine transporter expression in HEK293 cells: pharmacology and location. Biochem Biophys Res Commun 282(5):1132–1137. doi:10.1006/bbrc.2001.4703

    Article  CAS  PubMed  Google Scholar 

  20. Yang Y, Wolfram J, Fang X, Shen H, Ferrari M (2014) Polyarginine induces an antitumor immune response through binding to toll-Like receptor 4. Small 10(7):1250–1254. doi:10.1002/smll.201302887

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Pastore A, Piemonte F, Locatelli M, Lo Russo A, Gaeta LM, Tozzi G, Federici G (2001) Determination of blood total, reduced, and oxidized glutathione in pediatric subjects. Clin Chem 47(8):1467–1469

    CAS  PubMed  Google Scholar 

  22. O’Shaughnessy JA, Fisherman JS, Cowan KH (1994) Combination paclitaxel (Taxol) and doxorubicin therapy for metastatic breast cancer. Semin Oncol 21(5 Suppl 8):19–23

    PubMed  Google Scholar 

  23. Kim SY, Kim SJ, Kim BJ, Rah SY, Chung SM, Im MJ, Kim UH (2006) Doxorubicin-induced reactive oxygen species generation and intracellular Ca2+ increase are reciprocally modulated in rat cardiomyocytes. Exp Mol Med 38(5):535–545. doi:10.1038/emm.2006.63

    Article  CAS  PubMed  Google Scholar 

  24. Wang SW, Konorev EA, Kotamraju S, Joseph J, Kalivendi S, Kalyanaraman B (2004) Doxorubicin induces apoptosis in normal and tumor cells via distinctly different mechanisms—intermediacy of H2O2- and p53-dependent pathways. J Biol Chem 279(24):25535–25543. doi:10.1074/jbc.M400944200

    Article  CAS  PubMed  Google Scholar 

  25. Gilliam LA, Moylan JS, Patterson EW, Smith JD, Wilson AS, Rabbani Z, Reid MB (2012) Doxorubicin acts via mitochondrial ROS to stimulate catabolism in C2C12 myotubes. Am J Physiol Cell Physiol 302(1):C195–C202. doi:10.1152/ajpcell.00217.2011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Engel RH, Evens AM (2006) Oxidative stress and apoptosis: a new treatment paradigm in cancer. Front Biosci 11:300–312. doi:10.2741/1798

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Osamu Nagano for providing the CD44v antibody. The research was supported by funds from Excellent Academic Backbone Program of Tenth People’s Hospital of Shanghai (No. 12XSGG102).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Yang.

Additional information

This article has been retracted at the request of the corresponding author due to submission of his article for publication without internal review and approval from his institution (Houston Methodist Research Institute).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 243 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Yang, Y. RETRACTED ARTICLE: Suppression of the xCT–CD44v antiporter system sensitizes triple-negative breast cancer cells to doxorubicin. Breast Cancer Res Treat 147, 203–210 (2014). https://doi.org/10.1007/s10549-014-3068-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-014-3068-6

Keywords

Navigation