Skip to main content

Advertisement

Log in

Metallothionein: a Potential Link in the Regulation of Zinc in Nutritional Immunity

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Nutritional immunity describes mechanisms for withholding essential transition metals as well as directing the toxicity of these metals against infectious agents. Zinc is one of these transition elements that are essential for both humans and microbial pathogens. At the same time, Zn can be toxic both for man and microbes if its concentration is higher than the tolerance limit. Therefore a “delicate” balance of Zn must be maintained to keep the immune cells surveilling while making the level of Zn either to starve or to intoxicate the pathogens. On the other hand, the invading pathogens will exploit the host Zn pool for its survival and replication. Apparently, different sets of protein in human and bacteria are involved to maintain their Zn need. Metallothionein (MT)—a group of low molecular weight proteins, is well known for its Zn-binding ability and is expected to play an important role in that Zn balance at the time of active infection. However, the differences in structural, functional, and molecular control of biosynthesis between human and bacterial MT might play an important role to determine the proper use of Zn and the winning side. The current review explains the possible involvement of human and bacterial MT at the time of infection to control and exploit Zn for their need.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hood MI, Skaar EP (2012) Nutritional immunity: transition metals at the pathogen-host interface. Nat Rev Microbiol 10:525–537. doi:10.1038/nrmicro2836

    Article  CAS  PubMed  Google Scholar 

  2. Andreini C, Bertini I, Cavallaro G et al (2008) Metal ions in biological catalysis: from enzyme databases to general principles. J Biol Inorg Chem 13:1205–1218. doi:10.1007/s00775-008-0404-5

    Article  CAS  PubMed  Google Scholar 

  3. Andreini C, Banci L, Bertini I, Rosato A (2006) Zinc through the three domains of life. J Proteome Res 5:3173–3178. doi:10.1021/pr0603699

    Article  CAS  PubMed  Google Scholar 

  4. Fischer Walker C, Black RE (2004) Zinc and the risk for infectious disease. Annu Rev Nutr 24:255–275. doi:10.1146/annurev.nutr.23.011702.073054

    Article  CAS  PubMed  Google Scholar 

  5. Kulkarni H, Mamtani M, Patel A (2012) Roles of zinc in the pathophysiology of acute diarrhea. Curr Infect Dis Rep 14:24–32. doi:10.1007/s11908-011-0222-8

    Article  PubMed  Google Scholar 

  6. Jarosz M, Olbert M, Wyszogrodzka G et al (2017) Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling Inflammopharmacology 25:11–24. doi:10.1007/s10787-017-0309-4

    Article  CAS  PubMed  Google Scholar 

  7. Shankar AH, Prasad AS (1998) Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nutr 68:447S–463S

    Article  CAS  PubMed  Google Scholar 

  8. Corbett D, Wang J, Schuler S et al (2012) Two zinc uptake systems contribute to the full virulence of Listeria monocytogenes during growth in vitro and in vivo. Infect Immun 80:14–21. doi:10.1128/IAI.05904-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ong CY, Gillen CM, Barnett TC et al (2014) An antimicrobial role for zinc in innate immune defense against group A streptococcus. J Infect Dis 209:1500–1508. doi:10.1093/infdis/jiu053

    Article  CAS  PubMed  Google Scholar 

  10. Capdevila DA, Wang J, Giedroc DP (2016) Bacterial strategies to maintain zinc metallostasis at the host-pathogen interface. J Biol Chem 291:20858–20868. doi:10.1074/jbc.R116.742023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carpene E, Andreani G, Isani G (2007) Metallothionein functions and structural characteristics. J Trace Elem Med Biol 21(Suppl 1):35–39. doi:10.1016/j.jtemb.2007.09.011

    Article  CAS  PubMed  Google Scholar 

  12. Nordberg M, Nordberg GF (2000) Toxicological aspects of metallothionein. Cell Mol Biol (Noisy-le-grand) 46:451–463

    CAS  Google Scholar 

  13. Rigby Duncan KE, Stillman MJ (2006) Metal-dependent protein folding: metallation of metallothionein. J Inorg Biochem 100:2101–2107. doi:10.1016/j.jinorgbio.2006.09.005

    Article  CAS  PubMed  Google Scholar 

  14. Vasak M (2005) Advances in metallothionein structure and functions. J Trace Elem Med Biol 19:13–17. doi:10.1016/j.jtemb.2005.03.003

    Article  CAS  PubMed  Google Scholar 

  15. Chang X, Jin T, Chen L et al (2009) Metallothionein I isoform mRNA expression in peripheral lymphocytes as a biomarker for occupational cadmium exposure. Exp Biol Med (Maywood) 234:666–672. doi:10.3181/0811-RM-336

    Article  CAS  Google Scholar 

  16. Karin M, Herschman HR (1980) Glucocorticoid hormone receptor mediated induction of metallothionein synthesis in HeLa cells. J Cell Physiol 103:35–40. doi:10.1002/jcp.1041030106

    Article  CAS  PubMed  Google Scholar 

  17. Karin M, Imbra RJ, Heguy A, Wong G (1985) Interleukin 1 regulates human metallothionein gene expression. Mol Cell Biol 5:2866–2869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nourani MR, Ebrahimi M, Roudkenar MH et al (2011) Sulfur mustard induces expression of metallothionein-1A in human airway epithelial cells. Int J Gen Med 4:413–419. doi:10.2147/IJGM.S17916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Phillippi JA, Klyachko EA, Kenny JP 4th et al (2009) Basal and oxidative stress-induced expression of metallothionein is decreased in ascending aortic aneurysms of bicuspid aortic valve patients. Circulation 119:2498–2506. doi:10.1161/CIRCULATIONAHA.108.770776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yamada H, Koizumi S (1991) Metallothionein induction in human peripheral blood lymphocytes by heavy metals. Chem Biol Interact 78:347–354

    Article  CAS  PubMed  Google Scholar 

  21. Boonprasert K, Ruengweerayut R, Aunpad R et al (2012) Expression of metallothionein isoforms in peripheral blood leukocytes from Thai population residing in cadmium-contaminated areas. Environ Toxicol Pharmacol 34:935–940. doi:10.1016/j.etap.2012.08.002

    Article  CAS  PubMed  Google Scholar 

  22. Khan Z, Nisar MA, Hussain SZ et al (2015) Cadmium resistance mechanism in Escherichia coli P4 and its potential use to bioremediate environmental cadmium. Appl Microbiol Biotechnol 99:10745–10757. doi:10.1007/s00253-015-6901-x

    Article  CAS  PubMed  Google Scholar 

  23. Khan Z, Rehman A, Hussain SZ et al (2016) Cadmium resistance and uptake by bacterium, Salmonella enterica 43C, isolated from industrial effluent. AMB Express 6:54. doi:10.1186/s13568-016-0225-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sharma J, Shamim K, Dubey SK, Meena RM (2017) Metallothionein assisted periplasmic lead sequestration as lead sulfite by Providencia vermicola strain SJ2A. Sci Total Environ 579:359–365. doi:10.1016/j.scitotenv.2016.11.089

    Article  CAS  PubMed  Google Scholar 

  25. Rowland JL, Niederweis M (2012) Resistance mechanisms of Mycobacterium tuberculosis against phagosomal copper overload. Tuberculosis (Edinb) 92:202–210. doi:10.1016/j.tube.2011.12.006

    Article  CAS  Google Scholar 

  26. Calesnick B, Dinan AM (1988) Zinc deficiency and zinc toxicity. Am Fam Physician 37:267–270

    CAS  PubMed  Google Scholar 

  27. Tipton IH, Schroeder HA, Perry HMJ, Cook MJ (1965) Trace elements in human tissue. 3. Subjects from Africa, the Near and Far East and Europe. Health Phys 11:403–451

    Article  CAS  PubMed  Google Scholar 

  28. Karcioglu ZA (1982) Zinc in the eye. Surv Ophthalmol 27:114–122

    Article  CAS  PubMed  Google Scholar 

  29. Karcioglu ZA, Stout R, Hahn HJ (1984) Serum zinc levels in retinitis pigmentosa. Curr Eye Res 3:1043–1048

    Article  CAS  PubMed  Google Scholar 

  30. Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73:79–118

    Article  CAS  PubMed  Google Scholar 

  31. Foster M, Samman S (2012) Zinc and regulation of inflammatory cytokines: implications for cardiometabolic disease. Nutrients 4:676–694. doi:10.3390/nu4070676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cousins RJ, Dunn MA, Leinart AS et al (1986) Coordinate regulation of zinc metabolism and metallothionein gene expression in rats. Am J Phys 251:E688–E694

    CAS  Google Scholar 

  33. Andreini C, Banci L, Bertini I, Rosato A (2006) Counting the zinc-proteins encoded in the human genome. J Proteome Res 5:196–201. doi:10.1021/pr050361j

    Article  CAS  PubMed  Google Scholar 

  34. Lichten LA, Cousins RJ (2009) Mammalian zinc transporters: nutritional and physiologic regulation. Annu Rev Nutr 29:153–176. doi:10.1146/annurev-nutr-033009-083312

    Article  PubMed  Google Scholar 

  35. Cousins RJ, Liuzzi JP, Lichten LA (2006) Mammalian zinc transport, trafficking, and signals. J Biol Chem 281:24085–24089. doi:10.1074/jbc.R600011200

    Article  CAS  PubMed  Google Scholar 

  36. Palmiter RD, Findley SD (1995) Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. EMBO J 14:639–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang L, Kirschke CP, Zhang Y, Yu YY (2005) The ZIP7 gene (Slc39a7) encodes a zinc transporter involved in zinc homeostasis of the Golgi apparatus. J Biol Chem 280:15456–15463. doi:10.1074/jbc.M412188200

    Article  CAS  PubMed  Google Scholar 

  38. Wang F, Kim B-E, Petris MJ, Eide DJ (2004) The mammalian Zip5 protein is a zinc transporter that localizes to the basolateral surface of polarized cells. J Biol Chem 279:51433–51441. doi:10.1074/jbc.M408361200

    Article  CAS  PubMed  Google Scholar 

  39. Dufner-Beattie J, Kuo Y-M, Gitschier J, Andrews GK (2004) The adaptive response to dietary zinc in mice involves the differential cellular localization and zinc regulation of the zinc transporters ZIP4 and ZIP5. J Biol Chem 279:49082–49090. doi:10.1074/jbc.M409962200

    Article  CAS  PubMed  Google Scholar 

  40. Liuzzi JP, Lichten LA, Rivera S et al (2005) Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase response. Proc Natl Acad Sci U S A 102:6843–6848. doi:10.1073/pnas.0502257102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hasan R, Rink L, Haase H (2016) Chelation of free Zn(2)(+) impairs chemotaxis, phagocytosis, oxidative burst, degranulation, and cytokine production by neutrophil granulocytes. Biol Trace Elem Res 171:79–88. doi:10.1007/s12011-015-0515-0

    Article  CAS  PubMed  Google Scholar 

  42. Prasad AS (2008) Zinc in human health: effect of zinc on immune cells. Mol Med 14:353–357. doi:10.2119/2008-00033.Prasad

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bonaventura P, Benedetti G, Albarede F, Miossec P (2015) Zinc and its role in immunity and inflammation. Autoimmun Rev 14:277–285. doi:10.1016/j.autrev.2014.11.008

    Article  CAS  PubMed  Google Scholar 

  44. Haase H, Rink L (2014) Zinc signals and immune function. Biofactors 40:27–40. doi:10.1002/biof.1114

    Article  CAS  PubMed  Google Scholar 

  45. Lawrence T (2009) The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 1:a001651. doi:10.1101/cshperspect.a001651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hayden MS, Ghosh S (2014) Regulation of NF-kappaB by TNF family cytokines. Semin Immunol 26:253–266. doi:10.1016/j.smim.2014.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu M-J, Bao S, Galvez-Peralta M et al (2013) ZIP8 regulates host defense through zinc-mediated inhibition of NF-kappaB. Cell Rep 3:386–400. doi:10.1016/j.celrep.2013.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Galvez-Peralta M, Wang Z, Bao S et al (2014) Tissue-specific induction of mouse ZIP8 and ZIP14 divalent cation/bicarbonate symporters by, and cytokine response to, inflammatory signals. Int J Toxicol 33:246–258. doi:10.1177/1091581814529310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Talukder P, Satho T, Irie K et al (2011) Trace metal zinc stimulates secretion of antimicrobial peptide LL-37 from Caco-2 cells through ERK and p38 MAP kinase. Int Immunopharmacol 11:141–144. doi:10.1016/j.intimp.2010.10.010

    Article  CAS  PubMed  Google Scholar 

  50. Gordon YJ, Huang LC, Romanowski EG et al (2005) Human cathelicidin (LL-37), a multifunctional peptide, is expressed by ocular surface epithelia and has potent antibacterial and antiviral activity. Curr Eye Res 30:385–394. doi:10.1080/02713680590934111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang M, Liu L-H, Wang S et al (2007) Human peptidoglycan recognition proteins require zinc to kill both gram-positive and gram-negative bacteria and are synergistic with antibacterial peptides. J Immunol 178:3116–3125

    Article  CAS  PubMed  Google Scholar 

  52. Beck FW, Kaplan J, Fine N et al (1997) Decreased expression of CD73 (ecto-5′-nucleotidase) in the CD8+ subset is associated with zinc deficiency in human patients. J Lab Clin Med 130:147–156

    Article  CAS  PubMed  Google Scholar 

  53. Sohnle PG, Hunter MJ, Hahn B, Chazin WJ (2000) Zinc-reversible antimicrobial activity of recombinant calprotectin (migration inhibitory factor-related proteins 8 and 14). J Infect Dis 182:1272–1275. doi:10.1086/315810

    Article  CAS  PubMed  Google Scholar 

  54. Powanda MC, Cockerell GL, Pekarek RS (1973) Amino acid and zinc movement in relation to protein synthesis early in inflammation. Am J Phys 225:399–401

    Article  CAS  Google Scholar 

  55. Haase H, Rink L (2009) The immune system and the impact of zinc during aging. Immun Ageing 6:9. doi:10.1186/1742-4933-6-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sazawal S, Black RE, Bhan MK et al (1995) Zinc supplementation in young children with acute diarrhea in India. N Engl J Med 333:839–844. doi:10.1056/NEJM199509283331304

    Article  CAS  PubMed  Google Scholar 

  57. Sazawal S, Black RE, Jalla S et al (1998) Zinc supplementation reduces the incidence of acute lower respiratory infections in infants and preschool children: a double-blind, controlled trial. Pediatrics 102:1–5

    Article  CAS  PubMed  Google Scholar 

  58. Prasad AS, Beck FW, Kaplan J et al (1999) Effect of zinc supplementation on incidence of infections and hospital admissions in sickle cell disease (SCD). Am J Hematol 61:194–202

    Article  CAS  PubMed  Google Scholar 

  59. Prasad AS, Beck FWJ, Bao B et al (2007) Zinc supplementation decreases incidence of infections in the elderly: effect of zinc on generation of cytokines and oxidative stress. Am J Clin Nutr 85:837–844

    Article  CAS  PubMed  Google Scholar 

  60. Celli J, Zahrt TC (2013) Mechanisms of Francisella tularensis intracellular pathogenesis. Cold Spring Harb Perspect Med 3:1–14. doi:10.1101/cshperspect.a010314

    Article  CAS  Google Scholar 

  61. Coghlan LG, Carlomagno MA, McMurray DN (1988) Effect of protein and zinc deficiencies on vaccine efficacy in guinea pigs following pulmonary infection with Listeria. Med Microbiol Immunol 177:255–263

    Article  CAS  PubMed  Google Scholar 

  62. Kidd MT, Qureshi MA, Ferket PR, Thomas LN (1994) Dietary zinc-methionine enhances mononuclear-phagocytic function in young turkeys. Zinc-methionine, immunity, and Salmonella. Biol Trace Elem Res 42:217–229

    Article  CAS  PubMed  Google Scholar 

  63. McMurray DN, Bartow RA, Mintzer CL, Hernandez-Frontera E (1990) Micronutrient status and immune function in tuberculosis. Ann N Y Acad Sci 587:59–69

    Article  CAS  PubMed  Google Scholar 

  64. Chang AK, Kim HY, Park JE et al (2005) Vibrio vulnificus secretes a broad-specificity metalloprotease capable of interfering with blood homeostasis through prothrombin activation and fibrinolysis. J Bacteriol 187:6909–6916. doi:10.1128/JB.187.20.6909-6916.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kooi C, Subsin B, Chen R et al (2006) Burkholderia cenocepacia ZmpB is a broad-specificity zinc metalloprotease involved in virulence. Infect Immun 74:4083–4093. doi:10.1128/IAI.00297-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Grimwood BG, Plummer THJ, Tarentino AL (1994) Purification and characterization of a neutral zinc endopeptidase secreted by Flavobacterium meningosepticum. Arch Biochem Biophys 311:127–132. doi:10.1006/abbi.1994.1217

    Article  CAS  PubMed  Google Scholar 

  67. Tarentino AL, Quinones G, Grimwood BG et al (1995) Molecular cloning and sequence analysis of flavastacin: an O-glycosylated prokaryotic zinc metalloendopeptidase. Arch Biochem Biophys 319:281–285. doi:10.1006/abbi.1995.1293

    Article  CAS  PubMed  Google Scholar 

  68. Miyoshi N, Shimizu C, Miyoshi S, Shinoda S (1987) Purification and characterization of Vibrio vulnificus protease. Microbiol Immunol 31:13–25

    Article  CAS  PubMed  Google Scholar 

  69. Elgaml A, Miyoshi S-I (2017) Regulation systems of protease and hemolysin production in Vibrio vulnificus. Microbiol Immunol 61:1–11. doi:10.1111/1348-0421.12465

    Article  CAS  PubMed  Google Scholar 

  70. Jin F, Matsushita O, Katayama S et al (1996) Purification, characterization, and primary structure of Clostridium perfringens lambda-toxin, a thermolysin-like metalloprotease. Infect Immun 64:230–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Morihara K (1964) Production of elastase and proteinase by Pseudomonas aeruginosa. J Bacteriol 88:745–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Heck LW, Alarcon PG, Kulhavy RM et al (1990) Degradation of IgA proteins by Pseudomonas aeruginosa elastase. J Immunol 144:2253–2257

    CAS  PubMed  Google Scholar 

  73. Myers LL, Firehammer BD, Shoop DS, Border MM (1984) Bacteroides fragilis: a possible cause of acute diarrheal disease in newborn lambs. Infect Immun 44:241–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Moncrief JS, Obiso RJ, Barroso LA et al (1995) The enterotoxin of Bacteroides fragilis is a metalloprotease. Infect Immun 63:175–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wu S, Lim KC, Huang J et al (1998) Bacteroides fragilis enterotoxin cleaves the zonula adherens protein, E-cadherin. Proc Natl Acad Sci U S A 95:14979–14984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Plaut AG, Genco RJ, Tomasi TBJ (1974) Isolation of an enzyme from Streptococcus sanguis which specifically cleaves IgA. J Immunol 113:589–591

    CAS  PubMed  Google Scholar 

  77. Molla A, Matsumoto K, Oyamada I et al (1986) Degradation of protease inhibitors, immunoglobulins, and other serum proteins by Serratia protease and its toxicity to fibroblast in culture. Infect Immun 53:522–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kerr MA, Loomes LM, Senior BW (1995) Cleavage of IgG and IgA in vitro and in vivo by the urinary tract pathogen Proteus mirabilis. Adv Exp Med Biol 371A:609–611

    Article  CAS  PubMed  Google Scholar 

  79. Loomes LM, Kerr MA, Senior BW (1993) The cleavage of immunoglobulin G in vitro and in vivo by a proteinase secreted by the urinary tract pathogen Proteus mirabilis. J Med Microbiol 39:225–232. doi:10.1099/00222615-39-3-225

    Article  CAS  PubMed  Google Scholar 

  80. Brezski RJ, Jordan RE (2010) Cleavage of IgGs by proteases associated with invasive diseases: an evasion tactic against host immunity? MAbs 2:212–220

    Article  PubMed  PubMed Central  Google Scholar 

  81. Warfel JM, Steele AD, D’Agnillo F (2005) Anthrax lethal toxin induces endothelial barrier dysfunction. Am J Pathol 166:1871–1881. doi:10.1016/S0002-9440(10)62496-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Smith H, Stanley JL (1962) Purification of the third factor of anthrax toxin. J Gen Microbiol 29:517–521. doi:10.1099/00221287-29-3-517

    Article  CAS  PubMed  Google Scholar 

  83. Leppla SH, Arora N, Varughese M (1999) Anthrax toxin fusion proteins for intracellular delivery of macromolecules. J Appl Microbiol 87:284

  84. Smith H (2002) Discovery of the anthrax toxin: the beginning of studies of virulence determinants regulated in vivo. Int J Med Microbiol 291:411–417

    Article  CAS  PubMed  Google Scholar 

  85. Kastrup CJ, Boedicker JQ, Pomerantsev AP et al (2008) Spatial localization of bacteria controls coagulation of human blood by “quorum acting”. Nat Chem Biol 4:742–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mintz CS, Miller RD, Gutgsell NS, Malek T (1993) Legionella pneumophila protease inactivates interleukin-2 and cleaves CD4 on human T cells. Infect Immun 61:3416–3421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chung M-C, Popova TG, Millis BA et al (2006) Secreted neutral metalloproteases of Bacillus anthracis as candidate pathogenic factors. J Biol Chem 281:31408–31418. doi:10.1074/jbc.M605526200

    Article  CAS  PubMed  Google Scholar 

  88. Davis SR, Cousins RJ (2000) Metallothionein expression in animals: a physiological perspective on function. J Nutr 130:1085–1088

    Article  CAS  PubMed  Google Scholar 

  89. Ruttkay-Nedecky B, Nejdl L, Gumulec J et al (2013) The role of metallothionein in oxidative stress. Int J Mol Sci 14:6044–6066. doi:10.3390/ijms14036044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Selvaraj A, Balamurugan K, Yepiskoposyan H et al (2005) Metal-responsive transcription factor (MTF-1) handles both extremes, copper load and copper starvation, by activating different genes. Genes Dev 19:891–896. doi:10.1101/gad.1301805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Olafson RW, Abel K, Sim RG (1979) Prokaryotic metallothionein: preliminary characterization of a blue-green alga heavy metal-binding protein. Biochem Biophys Res Commun 89:36–43

    Article  CAS  PubMed  Google Scholar 

  92. Westin G, Schaffner W (1988) A zinc-responsive factor interacts with a metal-regulated enhancer element (MRE) of the mouse metallothionein-I gene. EMBO J 7:3763–3770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Palmiter RD (1994) Regulation of metallothionein genes by heavy metals appears to be mediated by a zinc-sensitive inhibitor that interacts with a constitutively active transcription factor, MTF-1. Proc Natl Acad Sci U S A 91:1219–1223. doi:10.1073/pnas.91.4.1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Guo L, Lichten LA, Ryu M-S et al (2010) STAT5-glucocorticoid receptor interaction and MTF-1 regulate the expression of ZnT2 (Slc30a2) in pancreatic acinar cells. Proc Natl Acad Sci U S A 107:2818–2823. doi:10.1073/pnas.0914941107

    Article  PubMed  PubMed Central  Google Scholar 

  95. Chang X-L, Jin T-Y, Zhou Y-F (2006) Metallothionein 1 isoform gene expression induced by cadmium in human peripheral blood lymphocytes. Biomed Environ Sci 19:104–109

    CAS  PubMed  Google Scholar 

  96. Jonai H, Yamada H, Suzuki K et al (1992) Estimation of metallothionein synthesis in cadmium-exposed human lymphocytes by gel electrophoresis and silver staining. Ind Health 30:129–137

    Article  CAS  PubMed  Google Scholar 

  97. Smirnova IV, Bittel DC, Ravindra R et al (2000) Zinc and cadmium can promote rapid nuclear translocation of metal response element-binding transcription factor-1. J Biol Chem 275:9377–9384

    Article  CAS  PubMed  Google Scholar 

  98. Waldron KJ, Rutherford JC, Ford D, Robinson NJ (2009) Metalloproteins and metal sensing. Nature 460:823–830. doi:10.1038/nature08300

    Article  CAS  PubMed  Google Scholar 

  99. Zhang B, Georgiev O, Hagmann M et al (2003) Activity of metal-responsive transcription factor 1 by toxic heavy metals and H2O2 in vitro is modulated by metallothionein. Mol Cell Biol 23:8471–8485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Haq F, Mahoney M, Koropatnick J (2003) Signaling events for metallothionein induction. Mutat Res 533:211–226

    Article  CAS  PubMed  Google Scholar 

  101. Kelly EJ, Sandgren EP, Brinster RL, Palmiter RD (1997) A pair of adjacent glucocorticoid response elements regulate expression of two mouse metallothionein genes. Proc Natl Acad Sci U S A 94:10045–10050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Quaife C, Hammer RE, Mottet NK, Palmiter RD (1986) Glucocorticoid regulation of metallothionein during murine development. Dev Biol 118:549–555

    Article  CAS  PubMed  Google Scholar 

  103. Dalton T, Palmiter RD, Andrews GK (1994) Transcriptional induction of the mouse metallothionein-I gene in hydrogen peroxide-treated Hepa cells involves a composite major late transcription factor/antioxidant response element and metal response promoter elements. Nucleic Acids Res 22:5016–5023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Maret W (2000) The function of zinc metallothionein: a link between cellular zinc and redox state. J Nutr 130:1455S–1458S

    Article  CAS  PubMed  Google Scholar 

  105. Coyle P, Philcox JC, Carey LC, Rofe AM (2002) Metallothionein: the multipurpose protein. Cell Mol Life Sci 59:627–647

    Article  CAS  PubMed  Google Scholar 

  106. Moffatt P, Denizeau F (1997) Metallothionein in physiological and physiopathological processes. Drug Metab Rev 29:261–307

    Article  CAS  PubMed  Google Scholar 

  107. Garrett SH, Sens MA, Todd JH et al (1999) Expression of MT-3 protein in the human kidney. Toxicol Lett 105:207–214

    Article  CAS  PubMed  Google Scholar 

  108. Moffatt P, Seguin C (1998) Expression of the gene encoding metallothionein-3 in organs of the reproductive system. DNA Cell Biol 17:501–510. doi:10.1089/dna.1998.17.501

    Article  CAS  PubMed  Google Scholar 

  109. Neal JW, Singhrao SK, Jasani B, Newman GR (1996) Immunocytochemically detectable metallothionein is expressed by astrocytes in the ischaemic human brain. Neuropathol Appl Neurobiol 22:243–247

    Article  CAS  PubMed  Google Scholar 

  110. Suzuki K, Nakajima K, Otaki N, Kimura M (1994) Metallothionein in developing human brain. Biol Signals 3:188–192

    Article  CAS  PubMed  Google Scholar 

  111. Werynska B, Pula B, Muszczynska-Bernhard B et al (2013) Expression of metallothionein-III in patients with non-small cell lung cancer. Anticancer Res 33:965–974

    PubMed  Google Scholar 

  112. Quaife CJ, Findley SD, Erickson JC et al (1994) Induction of a new metallothionein isoform (MT-IV) occurs during differentiation of stratified squamous epithelia. Biochemistry 33:7250–7259

    Article  CAS  PubMed  Google Scholar 

  113. Mao J, Yu H, Wang C et al (2012) Metallothionein MT1M is a tumor suppressor of human hepatocellular carcinomas. Carcinogenesis 33:2568–2577. doi:10.1093/carcin/bgs287

    Article  CAS  PubMed  Google Scholar 

  114. Moleirinho A, Carneiro J, Matthiesen R et al (2011) Gains, losses and changes of function after gene duplication: study of the metallothionein family. PLoS One 6:e18487. doi:10.1371/journal.pone.0018487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Olafson RW, McCubbin WD, Kay CM (1988) Primary- and secondary-structural analysis of a unique prokaryotic metallothionein from a Synechococcus sp. cyanobacterium. Biochem J 251:691–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Higham DP, Sadler PJ, Scawen MD (1986) Cadmium-binding proteins in Pseudomonas putida: pseudothioneins. Environ Health Perspect 65:5–11

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Huckle JW, Morby AP, Turner JS, Robinson NJ (1993) Isolation of a prokaryotic metallothionein locus and analysis of transcriptional control by trace metal ions. Mol Microbiol 7:177–187

    Article  CAS  PubMed  Google Scholar 

  118. Shi J, Lindsay WP, Huckle JW et al (1992) Cyanobacterial metallothionein gene expressed in Escherichia coli. Metal-binding properties of the expressed protein. FEBS Lett 303:159–163

    Article  CAS  PubMed  Google Scholar 

  119. Blindauer CA (2011) Bacterial metallothioneins: past, present, and questions for the future. J Biol Inorg Chem 16:1011–1024. doi:10.1007/s00775-011-0790-y

    Article  CAS  PubMed  Google Scholar 

  120. Gold B, Deng H, Bryk R et al (2008) Identification of a copper-binding metallothionein in pathogenic mycobacteria. Nat Chem Biol 4:609–616. doi:10.1038/nchembio.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Blindauer CA, Harrison MD, Parkinson JA et al (2001) A metallothionein containing a zinc finger within a four-metal cluster protects a bacterium from zinc toxicity. Proc Natl Acad Sci U S A 98:9593–9598. doi:10.1073/pnas.171120098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Oz G, Pountney DL, Armitage IM (1998) NMR spectroscopic studies of I = 1/2 metal ions in biological systems. Biochem Cell Biol 76:223–234

    Article  CAS  PubMed  Google Scholar 

  123. Robinson NJ, Whitehall SK, Cavet JS (2001) Microbial metallothioneins. Adv Microb Physiol 44:183–213

    Article  CAS  PubMed  Google Scholar 

  124. Glaser R, Harder J, Lange H et al (2005) Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection. Nat Immunol 6:57–64. doi:10.1038/ni1142

    Article  CAS  PubMed  Google Scholar 

  125. Moroz OV, Antson AA, Grist SJ et al (2003) Structure of the human S100A12-copper complex: implications for host-parasite defence. Acta Crystallogr D Biol Crystallogr 59:859–867

    Article  CAS  PubMed  Google Scholar 

  126. Moroz OV, Burkitt W, Wittkowski H et al (2009) Both Ca2+ and Zn2+ are essential for S100A12 protein oligomerization and function. BMC Biochem 10:11. doi:10.1186/1471-2091-10-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Corbin BD, Seeley EH, Raab A et al (2008) Metal chelation and inhibition of bacterial growth in tissue abscesses. Science 319:962–965. doi:10.1126/science.1152449

    Article  CAS  PubMed  Google Scholar 

  128. McCormick A, Heesemann L, Wagener J et al (2010) NETs formed by human neutrophils inhibit growth of the pathogenic mold Aspergillus fumigatus. Microbes Infect 12:928–936. doi:10.1016/j.micinf.2010.06.009

    Article  CAS  PubMed  Google Scholar 

  129. Urban CF, Ermert D, Schmid M et al (2009) Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog 5:e1000639. doi:10.1371/journal.ppat.1000639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hsu K, Champaiboon C, Guenther BD et al (2009) Anti-infective protective properties of S100 calgranulins. Antiinflamm Antiallergy Agents Med Chem 8:290–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ammendola S, Pasquali P, Pistoia C et al (2007) High-affinity Zn2+ uptake system ZnuABC is required for bacterial zinc homeostasis in intracellular environments and contributes to the virulence of Salmonella enterica. Infect Immun 75:5867–5876. doi:10.1128/IAI.00559-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Campoy S, Jara M, Busquets N et al (2002) Role of the high-affinity zinc uptake znuABC system in Salmonella enterica serovar typhimurium virulence. Infect Immun 70:4721–4725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Davis LM, Kakuda T, DiRita VJ (2009) A Campylobacter jejuni znuA orthologue is essential for growth in low-zinc environments and chick colonization. J Bacteriol 191:1631–1640. doi:10.1128/JB.01394-08

    Article  CAS  PubMed  Google Scholar 

  134. Rosadini CV, Gawronski JD, Raimunda D et al (2011) A novel zinc binding system, ZevAB, is critical for survival of nontypeable Haemophilus influenzae in a murine lung infection model. Infect Immun 79:3366–3376. doi:10.1128/IAI.05135-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kehl-Fie TE, Chitayat S, Hood MI et al (2011) Nutrient metal sequestration by calprotectin inhibits bacterial superoxide defense, enhancing neutrophil killing of Staphylococcus aureus. Cell Host Microbe 10:158–164. doi:10.1016/j.chom.2011.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Nisapakultorn K, Ross KF, Herzberg MC (2001) Calprotectin expression in vitro by oral epithelial cells confers resistance to infection by Porphyromonas gingivalis. Infect Immun 69:4242–4247. doi:10.1128/IAI.69.7.4242-4247.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Stork M, Grijpstra J, Bos MP et al (2013) Zinc piracy as a mechanism of Neisseria meningitidis for evasion of nutritional immunity. PLoS Pathog 9:e1003733. doi:10.1371/journal.ppat.1003733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Gaetke LM, McClain CJ, Talwalkar RT, Shedlofsky SI (1997) Effects of endotoxin on zinc metabolism in human volunteers. Am J Phys 272:E952–E956

    CAS  Google Scholar 

  139. Gabay C, Kushner I (1999) Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 340:448–454. doi:10.1056/NEJM199902113400607

    Article  CAS  PubMed  Google Scholar 

  140. Zitka O, Kukacka J, Krizkova S et al (2010) Matrix metalloproteinases. Curr Med Chem 17:3751–3768

    Article  CAS  PubMed  Google Scholar 

  141. Elkington PTG, O’Kane CM, Friedland JS (2005) The paradox of matrix metalloproteinases in infectious disease. Clin Exp Immunol 142:12–20. doi:10.1111/j.1365-2249.2005.02840.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wastney ME, Aamodt RL, Rumble WF, Henkin RI (1986) Kinetic analysis of zinc metabolism and its regulation in normal humans. Am J Phys 251:R398–R408

    CAS  Google Scholar 

  143. Wang Y, Tang JW, Ma WQ et al (2010) Dietary zinc glycine chelate on growth performance, tissue mineral concentrations, and serum enzyme activity in weanling piglets. Biol Trace Elem Res 133:325–334. doi:10.1007/s12011-009-8437-3

    Article  CAS  PubMed  Google Scholar 

  144. Plum LM, Rink L, Haase H (2010) The essential toxin: impact of zinc on human health. Int J Environ Res Public Health 7:1342–1365. doi:10.3390/ijerph7041342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Fukada T, Yamasaki S, Nishida K et al (2011) Zinc homeostasis and signaling in health and diseases: zinc signaling. J Biol Inorg Chem 16:1123–1134. doi:10.1007/s00775-011-0797-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Folin M, Contiero E, Vaselli GM (1994) Zinc content of normal human serum and its correlation with some hematic parameters. Biometals 7:75–79

    Article  CAS  PubMed  Google Scholar 

  147. Foote JW, Delves HT (1984) Albumin bound and alpha 2-macroglobulin bound zinc concentrations in the sera of healthy adults. J Clin Pathol 37:1050–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Prasad AS, Oberleas D (1974) Thymidine kinase activity and incorporation of thymidine into DNA in zinc-deficient tissue. J Lab Clin Med 83:634–639

    CAS  PubMed  Google Scholar 

  149. Osman D, Cavet JS (2011) Metal sensing in Salmonella: implications for pathogenesis. Adv Microb Physiol 58:175–232. doi:10.1016/B978-0-12-381043-4.00005-2

    Article  CAS  PubMed  Google Scholar 

  150. Desrosiers DC, Bearden SW, Mier IJ et al (2010) Znu is the predominant zinc importer in Yersinia pestis during in vitro growth but is not essential for virulence. Infect Immun 78:5163–5177. doi:10.1128/IAI.00732-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ma Z, Jacobsen FE, Giedroc DP (2009) Coordination chemistry of bacterial metal transport and sensing. Chem Rev 109:4644–4681. doi:10.1021/cr900077w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Patzer SI, Hantke K (1998) The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli. Mol Microbiol 28:1199–1210

    Article  CAS  PubMed  Google Scholar 

  153. Hantke K (2001) Bacterial zinc transporters and regulators. Biometals 14:239–249

    Article  CAS  PubMed  Google Scholar 

  154. Botella H, Peyron P, Levillain F et al (2011) Mycobacterial p(1)-type ATPases mediate resistance to zinc poisoning in human macrophages. Cell Host Microbe 10:248–259. doi:10.1016/j.chom.2011.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Choudhuri S, McKim JMJ, Klaassen CD (1992) Role of hepatic lysosomes in the degradation of metallothionein. Toxicol Appl Pharmacol 115:64–71

    Article  CAS  PubMed  Google Scholar 

  156. Gilston BA, Wang S, Marcus MD et al (2014) Structural and mechanistic basis of zinc regulation across the E. coli Zur regulon. PLoS Biol 12:e1001987. doi:10.1371/journal.pbio.1001987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Philips SJ, Canalizo-Hernandez M, Yildirim I et al (2015) Transcription. Allosteric transcriptional regulation via changes in the overall topology of the core promoter Science 349:877–881. doi:10.1126/science.aaa9809

    Article  CAS  PubMed  Google Scholar 

  158. Pederick VG, Eijkelkamp BA, Begg SL et al (2015) ZnuA and zinc homeostasis in Pseudomonas aeruginosa. Sci Rep 5:13139. doi:10.1038/srep13139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Calmettes C, Ing C, Buckwalter CM et al (2015) The molecular mechanism of zinc acquisition by the neisserial outer-membrane transporter ZnuD. Nat Commun 6:7996. doi:10.1038/ncomms8996

    Article  CAS  PubMed  Google Scholar 

  160. Petering DH, Krezoski S, Villalobos J et al (1987) Cadmium-zinc interactions in the Ehrlich cell: metallothionein and other sites. Experientia Suppl 52:573–580

    Article  CAS  PubMed  Google Scholar 

  161. Maret W (2012) New perspectives of zinc coordination environments in proteins. J Inorg Biochem 111:110–116. doi:10.1016/j.jinorgbio.2011.11.018

    Article  CAS  PubMed  Google Scholar 

  162. Patel K, Kumar A, Durani S (2007) Analysis of the structural consensus of the zinc coordination centers of metalloprotein structures. Biochim Biophys Acta 1774:1247–1253. doi:10.1016/j.bbapap.2007.07.010

    Article  CAS  PubMed  Google Scholar 

  163. Cousins RJ (1985) Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin. Physiol Rev 65:238–309

    Article  CAS  PubMed  Google Scholar 

  164. Vasak M, Hasler DW (2000) Metallothioneins: new functional and structural insights. Curr Opin Chem Biol 4:177–183

    Article  CAS  PubMed  Google Scholar 

  165. Jacob C, Maret W, Vallee BL (1998) Control of zinc transfer between thionein, metallothionein, and zinc proteins. Proc Natl Acad Sci U S A 95:3489–3494. doi:10.1073/pnas.95.7.3489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Maret W, Vallee BL (1998) Thiolate ligands in metallothionein confer redox activity on zinc clusters. Proc Natl Acad Sci U S A 95:3478–3482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Nakazato K, Tomioka S, Nakajima K et al (2014) Determination of the serum metallothionein (MT)1/2 concentration in patients with Wilson’s disease and Menkes disease. J Trace Elem Med Biol 28:441–447. doi:10.1016/j.jtemb.2014.07.013

    Article  CAS  PubMed  Google Scholar 

  168. Nagamine T, Nakajima K (2013) Development of a high sensitivity ELISA for the assay of metallothionein. Curr Pharm Biotechnol 14:427–431

    Article  CAS  PubMed  Google Scholar 

  169. Nakajima K, Kodaira T, Kato M et al (2010) Development of an enzyme-linked immunosorbent assay for metallothionein-I and -II in plasma of humans and experimental animals. Clin Chim Acta 411:758–761. doi:10.1016/j.cca.2010.02.058

    Article  CAS  PubMed  Google Scholar 

  170. Waeytens A, De Vos M, Laukens D (2009) Evidence for a potential role of metallothioneins in inflammatory bowel diseases. Mediat Inflamm. doi:10.1155/2009/729172

  171. Everhardt Queen A, Moerdyk-Schauwecker M, McKee LM et al (2016) Differential expression of inflammatory cytokines and stress genes in male and female mice in response to a lipopolysaccharide challenge. PLoS One 11:e0152289. doi:10.1371/journal.pone.0152289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. De SK, McMaster MT, Andrews GK (1990) Endotoxin induction of murine metallothionein gene expression. J Biol Chem 265:15267–15274

    CAS  PubMed  Google Scholar 

  173. Arizono K, Kagawa S, Hamada H, Ariyoshi T (1995) Nitric oxide mediated metallothionein induction by lipopolysaccharide. Res Commun Mol Pathol Pharmacol 90:49–58

    CAS  PubMed  Google Scholar 

  174. Itoh N, Kasutani K, Muto N et al (1996) Blocking effect of anti-mouse interleukin-6 monoclonal antibody and glucocorticoid receptor antagonist, RU38486, on metallothionein-inducing activity of serum from lipopolysaccharide-treated mice. Toxicology 112:29–36

    Article  CAS  PubMed  Google Scholar 

  175. Clarkson JP, Elmes ME, Jasani B, Webb M (1985) Histological demonstration of immunoreactive zinc metallothionein in liver and ileum of rat and man. Histochem J 17:343–352

    Article  CAS  PubMed  Google Scholar 

  176. Mulder TP, Verspaget HW, Janssens AR et al (1991) Decrease in two intestinal copper/zinc containing proteins with antioxidant function in inflammatory bowel disease. Gut 32:1146–1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Sturniolo GC, Mestriner C, Lecis PE et al (1998) Altered plasma and mucosal concentrations of trace elements and antioxidants in active ulcerative colitis. Scand J Gastroenterol 33:644–649

    Article  CAS  PubMed  Google Scholar 

  178. Kruidenier L, Kuiper I, Van Duijn W et al (2003) Imbalanced secondary mucosal antioxidant response in inflammatory bowel disease. J Pathol 201:17–27. doi:10.1002/path.1408

    Article  CAS  PubMed  Google Scholar 

  179. Bruwer M, Schmid KW, Metz KA et al (2001) Increased expression of metallothionein in inflammatory bowel disease. Inflamm Res 50:289–293. doi:10.1007/PL00000246

    Article  CAS  PubMed  Google Scholar 

  180. O’Connor KS, Parnell G, Patrick E et al (2014) Hepatic metallothionein expression in chronic hepatitis C virus infection is IFNL3 genotype-dependent. Genes Immun 15:88–94. doi:10.1038/gene.2013.66

    Article  CAS  PubMed  Google Scholar 

  181. Ilbäck NG, Frisk P, Mohamed N et al (2007) Virus induces metal-binding proteins and changed trace element balance in the brain during the course of a common human infection (coxsackievirus B3) in mice. Sci Total Environ 381:88–98. doi:10.1016/j.scitotenv.2007.03.025

    Article  CAS  PubMed  Google Scholar 

  182. Lynes MA, Garvey JS, Lawrence DA (1990) Extracellular metallothionein effects on lymphocyte activities. Mol Immunol 27:211–219

    Article  CAS  PubMed  Google Scholar 

  183. Lynes MA, Borghesi LA, Youn J, Olson EA (1993) Immunomodulatory activities of extracellular metallothionein. I Metallothionein effects on antibody production Toxicology 85:161–177

    CAS  PubMed  Google Scholar 

  184. Youn J, Borghesi LA, Olson EA, Lynes MA (1995) Immunomodulatory activities of extracellular metallothionein. II Effects on macrophage functions J Toxicol Environ Health 45:397–413. doi:10.1080/15287399509532004

    Article  CAS  PubMed  Google Scholar 

  185. Youn J, Lynes MA (1999) Metallothionein-induced suppression of cytotoxic T lymphocyte function: an important immunoregulatory control. Toxicol Sci 52:199–208

    Article  CAS  PubMed  Google Scholar 

  186. Bulua AC, Simon A, Maddipati R et al (2011) Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J Exp Med 208:519–533. doi:10.1084/jem.20102049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Robinson JM (2008) Reactive oxygen species in phagocytic leukocytes. Histochem Cell Biol 130:281–297. doi:10.1007/s00418-008-0461-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Santos SS, Brunialti MKC, Rigato O et al (2012) Generation of nitric oxide and reactive oxygen species by neutrophils and monocytes from septic patients and association with outcomes. Shock 38:18–23. doi:10.1097/SHK.0b013e318257114e

    Article  CAS  PubMed  Google Scholar 

  189. Pauwels M, van Weyenbergh J, Soumillion A et al (1994) Induction by zinc of specific metallothionein isoforms in human monocytes. Eur J Biochem 220:105–110

    Article  CAS  PubMed  Google Scholar 

  190. Rahman MT, De Ley M (2017) Arsenic induction of metallothionein and metallothionein induction against arsenic cytotoxicity. Rev Environ Contam Toxicol. doi:10.1007/398_2016_2

  191. Qu W, Waalkes MP (2015) Metallothionein blocks oxidative DNA damage induced by acute inorganic arsenic exposure. Toxicol Appl Pharmacol 282:267–274. doi:10.1016/j.taap.2014.11.014

    Article  CAS  PubMed  Google Scholar 

  192. Spiering R, Wagenaar-Hilbers J, Huijgen V et al (2014) Membrane-bound metallothionein 1 of murine dendritic cells promotes the expansion of regulatory T cells in vitro. Toxicol Sci 138:69–75. doi:10.1093/toxsci/kft268

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Tariqur Rahman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.T., Karim, M.M. Metallothionein: a Potential Link in the Regulation of Zinc in Nutritional Immunity. Biol Trace Elem Res 182, 1–13 (2018). https://doi.org/10.1007/s12011-017-1061-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-017-1061-8

Keywords

Navigation