Skip to main content

Advertisement

Log in

The Organogermanium Compound Ge-132 Interacts with Nucleic Acid Components and Inhibits the Catalysis of Adenosine Substrate by Adenosine Deaminase

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Poly-trans-[(2-carboxyethyl)germasesquioxane] (Ge-132) is a water-soluble organogermanium compound that exerts various physiological effects, including anti-inflammatory activity and pain relief. In water, Ge-132 is hydrolyzed to 3-(trihydroxygermyl)propanoic acid (THGP), which in turn is capable of interacting with cis-diol compounds through its trihydroxy group, indicating that this compound could also interact with diol-containing nucleic acid constituents. In this study, we evaluated the ability of THGP to interact with nucleosides or nucleotides via nuclear magnetic resonance (NMR) analysis. In addition, we evaluated the effect of added THGP on the enzymatic activity of adenosine deaminase (ADA) when using adenosine or 2′-deoxyadenosine as a substrate. In solution, THGP indeed formed complexes with nucleotides or nucleosides through their cis-diol group. Moreover, the ability of THGP to form complexes with nucleotides was influenced by the number of phosphate groups present on the ribose moiety. Notably, THGP also inhibited the catalysis of adenosine by ADA in a concentration-dependent manner. Thus, interactions between THGP and important biological nucleic acid constituents might be implicated in the physiological effects of Ge-132.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brutkiewicz RR, Suzuki F (1987) Biological activities and antitumor mechanism of an immunopotentiating organogermanium compound, Ge-132. In Vivo 1:189–203

    CAS  PubMed  Google Scholar 

  2. Tsutsui M, Kakimoto N, Axtell DD, Oikawa H, Asai K (1976) Crystal structure of “carboxyethylgermanium sesquioxide.”. J Am Chem Soc 98:8287–8289

    Article  CAS  Google Scholar 

  3. Nagata T, Nagata T, Aramaki Y, Enomoto M, Isaka H, Otsuka J (1978) Chronic intravenously toxicity study with carboxyethylgermanium sesquioxide in beagle dogs. Pharmacometrics 16:613–636

    CAS  Google Scholar 

  4. Sugiya Y, Sakamaki S, Sugita T, Abo Y, Satoh H (1986) Subacute oral toxicity of carboxyethylgermanium sesquioxide (Ge-132) in rats. Ouyou Yakuri 31:1181–1190 (in Japanese)

    CAS  Google Scholar 

  5. Miyao K, Onishi T, Asai K, Tomizawa S, Suzuki F (1980) Toxicology and phase I studies on a novel organogermanium compound, Ge-132. Curr Chemother Infect Dis 2:1527–1529

    CAS  Google Scholar 

  6. Ikemoto K, Kobayashi M, Fukumoto T, Morimatsu M, Pollard RB, Suzuki F (1996) 2-Carboxyethylgermanium sesquioxide, a synthetic organogermanium compound, as an inducer of contrasuppressor T cells. Experientia 52:159–166

    Article  CAS  PubMed  Google Scholar 

  7. Nakamura T, Saito M, Aso H (2012) Effects of a lactobacilli, oligosaccharide and organic germanium intake on the immune responses of mice. Biosci Biotechnol Biochem 76:375–377

    Article  CAS  PubMed  Google Scholar 

  8. Nakamura T, Takeda T, Tokuji Y (2015) The oral intake of organic germanium, Ge-132, elevates α-tocopherol levels in the plasma and modulates hepatic gene expression profiles to promote immune activation in mice. Int J Vitam Nutr Res 84:183–195

    Article  Google Scholar 

  9. Aso H, Shibuya E, Suzuki F, Nakamura T, Inoue H, Ebina T, Ishida N (1985) Antitumor effect in mice of an organic germanium compound (Ge-132) when different administration methods are used. Gan To Kagaku Ryoho 12:2345–2351

    CAS  PubMed  Google Scholar 

  10. Dozono H, Ikeda K, Onishi T (1996) Effectiveness of Ge-132 to relieve pain and smooth home care administration for the terminal cancer patient. Gan To Kagaku Ryoho 23(Suppl 3):291–295

    PubMed  Google Scholar 

  11. Suzuki F, Brutkiewicz RR, Pollard RB (1985) Ability of sera from mice treated with Ge-132, an organic germanium compound, to inhibit experimental murine ascites tumours. Br J Cancer 52:757–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shimada Y, Sato K, Tokuji Y, Nakamura T (2015) Nuclear magnetic resonance studies of the interactions between the organic germanium compound Ge-132 and saccharides. Carbohydr Res 407:10–15

    Article  CAS  PubMed  Google Scholar 

  13. Nagasawa T, Sato K, Shimada Y, Kasumi T (2016) Efficient conversion of D-glucose to D-fructose in the presence of organogermanium compounds. J Appl Glycosci 63:39–45

    Article  Google Scholar 

  14. Ataie G, Bagheri S, Divsalar A, Saboury AA, Safarian S, Namaki S, Moosavi-Movahedi AA (2007) A kinetic comparison on the inhibition of adenosine deaminase by purine drugs. Iran J Pharm Res 6:43–50

    CAS  Google Scholar 

  15. Valentine WN, Paglia DE, Clarke S, Morimoto BH, Nakatani M, Brockway R (1985) Adenine ribo- and deoxyribonucleotide metabolism in human erythrocytes, B- and T-lymphocyte cell lines, and monocyte-macrophages. Proc Natl Acad Sci U S A 82:6682–6686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fardus-Reid F, Warren J, Le Gresley A, Malze F, Janke H, Chylla RA, Hu K, Ellinger JJ, Markley JL, Martineau E et al (2016) Validating heteronuclear 2D quantitative NMR. Anal Methods 8:2013–2019

    Article  CAS  Google Scholar 

  17. Marschner H (1995) Mineral nutrition of higher plants. Acad Press, pp 379–396

  18. Kim DH, Faull KF, Norris AJ, Eckhert CD (2004) Borate-nucleotide complex formation depends on charge and phosphorylation state. J Mass Spectrom 39:743–751

    Article  CAS  PubMed  Google Scholar 

  19. Chen CC, Akopian AN, Sivilotti L, Colquhoun D, Burnstock G, Wood JN (1995) A P2X purinoceptor expressed by a subset of sensory neurons. Nature 377:428–431

    Article  CAS  PubMed  Google Scholar 

  20. Inoue K, Tsuda M, Koizumi S (2005) ATP receptors in pain sensation: involvement of spinal microglia and P2X(4) receptors. Purinergic Signal 1:95–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hide I, Tanaka M, Inoue A, Nakajima K, Kohsaka S, Inoue K, Nakata Y (2000) Extracellular ATP triggers tumor necrosis factor-α release from rat microglia. J Neurochem 75:965–972

    Article  CAS  PubMed  Google Scholar 

  22. Cook SP, McCleskey EW (2002) Cell damage excites nociceptors through release of cytosolic ATP. Pain 95:41–47

    Article  CAS  PubMed  Google Scholar 

  23. Koizumi S, Fujishita K, Inoue K, Shigemoto-Mogami Y, Tsuda M, Inoue K (2004) Ca2+ waves in keratinocytes are transmitted to sensory neurons: the involvement of extracellular ATP and P2Y2 receptor activation. Biochem J 380:329–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nakamura T, Shimada Y, Takeda T, Sato K, Akiba M, Fukaya H (2015) Organogermanium compound, Ge-132, forms complexes with adrenaline, ATP and other physiological cis-diol compounds. Future Med Chem 7:1233–1246

    Article  CAS  PubMed  Google Scholar 

  25. Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. Biochim Biophys Acta - Mol Cell Res 1783:673–694

    Article  CAS  Google Scholar 

  26. Belfrage M, Sollevi A, Segerdahl M, Sjölund KF, Hansson P (1995) Systemic adenosine infusion alleviates spontaneous and stimulus evoked pain in patients with peripheral neuropathic pain. Anesth Analg 81:713–717

    CAS  PubMed  Google Scholar 

  27. Montesinos MC, Desai A, Delano D, Chen JF, Fink JS, Jacobson MA, Cronstein BN (2003) Adenosine A2A or A3 receptors are required for inhibition of inflammation by methotrexate and its analog MX-68. Arthritis Rheum 48:240–247

    Article  CAS  PubMed  Google Scholar 

  28. Takagi H, Sato H, Nakayama Y, Kawaguti S (1983) Analgesic activity of organogermanium compound Ge-132. Jpn J Med Pharm Sci 10:153–157 (in Japanese)

    Google Scholar 

  29. Suzuki Y, Taguchi K (1983) Pharmacological studies of carboxyethylgermanium sesquioxide (Ge-132) (1). Pharmacometrics 26:803–810 (in Japanese)

    CAS  Google Scholar 

  30. Hachisu M, Takahashi H, Koeda T, Sekizawa Y (1983) Analgesic effect of novel organogermanium compound, GE-132. J Pharmacobiodyn 6:814–820

  31. Ueda T (1999) The effect of adenosin A1 fiber for nitrous oxide-and/or morphine induced Analges. Kyushu-Shika-Gakkai-zasshi 53:677–686 (in Japanese)

    CAS  Google Scholar 

  32. Yashpal K, Henry JL (1992) Adenosine receptor link in an adrenal opioid-induced antinociception in the rat tail-flick test. Neurosci Lett 138:253–256

    Article  CAS  PubMed  Google Scholar 

  33. Lavand’homme PM, Eisenach JC (1999) Exogenous and endogenous adenosine enhance the spinal antiallodynic effects of morphine in a rat model of neuropathic pain. Pain 80:31–36

    Article  PubMed  Google Scholar 

  34. Peart JN, Gross GJ (2003) Adenosine and opioid receptor-mediated cardioprotection in the rat: evidence for cross-talk between receptors. Am J Physiol Heart Circ Physiol 285:H81–H89

    Article  CAS  PubMed  Google Scholar 

  35. Gross ER, Gross GJ (2006) Ligand triggers of classical preconditioning and postconditioning. Cardiovasc Res 70:212–221

    Article  CAS  PubMed  Google Scholar 

  36. Tanaka K, Kersten JR, Riess ML (2014) Opioid-induced cardioprotection. Curr Pharm Des 20:5696–5705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen JF, Eltzschig HK, Fredholm BB (2013) Adenosine receptors as drug targets—what are the challenges? Nat Rev Drug Discov 12:265–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Barankiewicz J, Danks AM, Abushanab E, Makings L, Wiemann T, Wallis RA, Pragnacharyulu PV, Fox A, Marangos PJ (1997) Regulation of adenosine concentration and cytoprotective effects of novel reversible adenosine deaminase inhibitors. J Pharmacol Exp Ther 283:1230–1238

    CAS  PubMed  Google Scholar 

  39. Meuwissen HJ, Pollara B, Pickering RJ (1975) Combined immunodeficiency disease associated with adenosine deaminase deficiency. Report on a workshop held in Albany, New York, October 1, 1973. J Pediatr 86:169–181

    Article  CAS  PubMed  Google Scholar 

  40. Begleiter A, Pugh L, Israels LG, Johnston JB (1988) Enhanced cytotoxicity and inhibition of DNA damage repair in irradiated murine L5178Y lymphoblasts and human chronic lymphocytic leukemia cells treated with 2′-deoxycoformycin and deoxyadenosine in vitro. Cancer Res 48:3981–3986

    CAS  PubMed  Google Scholar 

  41. Bagnara AS, Hershfield MS (1982) Mechanism of deoxyadenosine-induced catabolism of adenine ribonucleotides in adenosine deaminase-inhibited human T lymphoblastoid cells. Proc Natl Acad Sci U S A 79:2673–2677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors want to thank K. Sakamoto (Hirosaki University) for his invaluable advice concerning the enzyme assay. We also thank H. Maeda (Hirosaki University) for his constructive comments. We did not receive any external funding or grants in support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Shimada.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimada, Y., Sato, K., Takeda, T. et al. The Organogermanium Compound Ge-132 Interacts with Nucleic Acid Components and Inhibits the Catalysis of Adenosine Substrate by Adenosine Deaminase. Biol Trace Elem Res 181, 164–172 (2018). https://doi.org/10.1007/s12011-017-1020-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-017-1020-4

Keywords

Navigation