Skip to main content
Log in

Concentration of Zinc, Copper, Iron, Calcium, and Magnesium in the Serum, Tissues, and Urine of Streptozotocin-Induced Mild Diabetic Rat Model

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The present study aimed to investigate, in the streptozotocin-induced mild diabetic rat model, the zinc (Zn), copper (Cu), iron (Fe), calcium (Ca), and magnesium (Mg) concentration in serum, liver, and kidney tissues, and urine samples from adult Wistar rats treated neonatally with streptozotocin (STZ). Diabetes was induced by subcutaneous administration of streptozotocin (100 mg/Kg) in female Wistar rats of 2 days old (STZ, n = 10). Control group (CG, n = 10) received only sodium-citrate buffer. The mineral concentrations were measured by atomic absorption spectrophotometry. The validity and accuracy were checked by conventional methods. STZ neonatal injection successfully leaded to mild diabetes in the adult rats. Serum concentrations of Zn, Cu, Fe, Ca, and Mg showed no changes (p > 0.05) due to diabetes. The Zn, Fe, Ca, and Mg concentrations in liver and kidney tissues were not different (p > 0.05) between STZ and CG. The mean values of Cu were higher (p < 0.05) in liver and kidney samples from STZ as compared to CG. Urine minerals concentrations (Zn, Cu, Fe and Ca) in STZ-rats group were lower (p < 0.05) than CG. However, the content of all evaluated minerals in the excreted urine were higher (p < 0.01) in STZ-rats during a 24 h collection period. Urinary excretion of Zn, Cu, Fe, Ca, and Mg was strongly correlated with urinary volume during the 24 h period (r > 0.7; p < 0.001). Observed changes in mineral metabolism of STZ-induced mild diabetes model could be due to the endocrine imbalance associated with the diabetic condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. ADA (2014) Diagnosis and classification of diabetes mellitus. Diabetes Care 37:S81–S90

    Article  Google Scholar 

  2. Jawerbaum A, White V (2010) Animal models in diabetes and pregnancy. Endocr Rev 31:680–701

    Article  PubMed  Google Scholar 

  3. Portha B, Levacher C, Picon L, Rosselin G (1974) Diabetogenic effect of streptozotocin in the rat during the perinatal period. Diabetes 23:889–895

    Article  CAS  PubMed  Google Scholar 

  4. Portha B, Picon L, Rosselin G (1979) Chemical diabetes in the adult rat as the spontaneous evolution of neonatal diabetes. Diabetologia 17:371–377

    Article  CAS  PubMed  Google Scholar 

  5. Goyal S, Reddy N, Patil K et al (2016) Challenges and issues with streptozotocin-induced diabetes–A clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics. Chem Biol Interact 244:49–63

    Article  CAS  PubMed  Google Scholar 

  6. Kiss AC, Lima PH, Sinzato YK et al. (2009) Animal models for clinical and gestational diabetes: maternal and fetal outcomes. Diabetol Metab Syndr. http://www.dmsjournal.com/content/1/1/21

  7. WHO (1973) Trace elements in human nutrition. Report of a WHO Expert Committee.series, no. 532 World Health Organization, Geneva

  8. Gómez T, Bequer L, Mollineda A, González O, Diaz M, Fernández D (2015) Serum zinc levels of cord blood: relation to birth weight and gestational period. J Trace Elem Med Biol 30:180–183

    Article  PubMed  Google Scholar 

  9. Khan AR, Awan FR (2014) Metals in the pathogenesis of type 2 diabetes. J Diabetes Metab Disord 13:16. doi:10.1186/2251-6581-13-16

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kazi TG, Afridi HI, Kazi N, Jamali MK, Arain MB, Jalbani N (2008) Copper, chromium, manganese, iron, nickel, and zinc levels in biological samples of diabetes mellitus patients. Biol Trace Elem Res 122:1–18

    Article  CAS  PubMed  Google Scholar 

  11. Mooren FC, Kruger K, Volker K, Golf SW, Wadepuhl M, Kraus A (2011) Oral magnesium supplementation reduces insulin resistance in non-diabetic subjects–a double-blind, placebo-controlled, randomized trial. Diabetes Obes Metab 13:281–284

    Article  CAS  PubMed  Google Scholar 

  12. Ragbetli C, Dede S, Tanritanir P, Yoruk IH, Ragbetli MC (2014) Determination of micronutrients and oxidative stress status in the blood of STZ-induced experimental diabetic rat models. Cell Biochem Biophys 70:933–938. doi:10.1007/s12013-014-0001-x

    Article  CAS  PubMed  Google Scholar 

  13. Levine AS, McClain CJ, Handwerger BS, Brown DM, Morley JE (1983) Tissue zinc status of genetically diabetic and streptozotocin-induced diabetic mice. Am J Clin Nutr 37:382–386

    CAS  PubMed  Google Scholar 

  14. Cordova A (1994) Zinc content in selected tissues in streptozotocin-diabetic rats after maximal exercise. Biol Trace Elem Res 42:209–216

    Article  CAS  PubMed  Google Scholar 

  15. Tamer L, Isbir T (2000) The levels of copper and zinc of sera, tissue and urine in the streptozotocin-incuced diabetic rats. Mersin Üniversitesi Tip Fakültesi Dergisi 2:119–122

    Google Scholar 

  16. Gómez T, Bequer L, Sánchez C et al (2014) Neonatally-induced mild hyperglycemias: metabolic and oxidative stress indicators in adult rats. Rev ALAD 4:148–157

    Google Scholar 

  17. Bequer L, Gómez T, Molina JL, Artiles D, Bermúdez R, Clapés S (2016) Streptozotocin diabetogenic action in an experimental model of neonatal induction. Biomedica 36:230–238

    Article  PubMed  Google Scholar 

  18. Cacho J, Sevillano J, de Castro J, Herrera E, Ramos MP (2008) Validation of simple indexes to assess insulin sensitivity during pregnancy in Wistar and Sprague-Dawley rats. Am J Physiol Endocrinol Metab 295:1269–1276

    Article  Google Scholar 

  19. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RL (1985) Homeostasis model assessment: insulin resistance and ß-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    Article  CAS  PubMed  Google Scholar 

  20. Milner BA, Whiteside PJ (1984) Introduction to atomic absorption spectrophotometry. Pye Unicam Ltd, Cambridge

    Google Scholar 

  21. Fu A (2013) Zinc metabolism in the streptozotocin (STZ)-diabetes. Dissertation, University of Massachusetts - Amherst

  22. Welna M, Szymczycha A, Pohl P (2011) Quality of the trace element analysis: sample preparation steps. In: Akyar I (ed) Wide spectra of quality control, 1st edn. InTech, Croatia, pp 53–70

    Google Scholar 

  23. Thompson M, Ellison S, Wood R (2002) Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report). Pure Appl Chem 74:835–855

    Article  CAS  Google Scholar 

  24. Figueroa C, Pérez I, Mejía R (2013) Characterization of a type 2 diabetes model in female Wistar rats. RevMVZ Córdoba 18:S3699–S3707

    Article  Google Scholar 

  25. Liang XD, Guo YY, Sun M et al (2011) Streptozotocin-induced expression of Ngn3 and Pax4 in neonatal rat pancreatic α-cells. World J Gastroenterol 17:2812–2820

    PubMed  PubMed Central  Google Scholar 

  26. Bequer L, Gómez T, Molina JL, López F, Gómez CL, Clapés S (2014) Moderate hyperglycemia induction in Wistar rats by neonatal streptozotocin inoculation. Subcutaneous or intraperitoneal injection? Rev Argent Endocrinol Metab 51:178–184

    Google Scholar 

  27. Alvarez A, Bequer L, Gómez T et al. (2017) Kidney damage by mild hyperglycemia in an animal model diabetes. Medicentro 21

  28. Lin C, Huang H, Hu C et al (2014) Trace elements, oxidative stress and glycemic control in young people with type 1 diabetes mellitus. J Trace Elem Med Biol 28:18–22

    Article  PubMed  Google Scholar 

  29. Sajedianfard J, Nazifi S, Shamsaei HA (2014) The effects of oral administration of different doses of hydroalcoholic extract of silymarin on status of serum trace elements. Am J Anim Vet Sci 9:170–176

    Article  Google Scholar 

  30. Failla ML, Kiser RA (1981) Altered tissue content and cytosol distribution of trace metals in experimental diabetes. J Nutr 111:1900–1909

    CAS  PubMed  Google Scholar 

  31. Ozcelik D, Tuncdemir M, Ozturk M, Uzun H (2011) Evaluation of trace elements and oxidative stress levels in the liver and kidney of streptozotocin-induced experimental diabetic rat model. Gen Physiol Biophys 30:356–363

    Article  CAS  PubMed  Google Scholar 

  32. Wu J, Chen Q, Gao Z (1997) Changes in contents of chromium, zinc and copper in the blood, liver and kidney of diabetic rats. Zhonghua Yu Fang Yi Xue Za Zhi 31:37–39

    CAS  PubMed  Google Scholar 

  33. Rungby J (2010) Zinc, zinc transporters and diabetes. Diabetologia 53:1549–1551

    Article  CAS  PubMed  Google Scholar 

  34. Siddiqui K, Bawazeer N, Joy SS (2014) Variation in macro and trace elements in progression of type 2 diabetes. Sci World J. doi:10.1155/2014/461591

    Google Scholar 

  35. Lau A, Failla ML (1984) Urinary excretion of zinc, copper and iron in the streptozotocin-diabetic rat. J Nutr 114:224–233

    CAS  PubMed  Google Scholar 

  36. Basaki M, Saeb M, Nazifi S, Shamsaei H (2012) Zinc, copper, iron and chromium concentrations in young patients with type 2 diabetes mellitus. Biol Trace Element Res 148:161–164

    Article  CAS  Google Scholar 

  37. Fernandez JM, Penarroja G, Castro A, Garcia F, Hernandez I, Ricart W (2002) Blood letting in high-ferritin type-2 diabetes, effects on insulin sensitivity and β-cell function. Diabetes 51:1000–1004

    Article  Google Scholar 

  38. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signaling. Nat Rev Mol Cell Biol 1:11–21

    Article  CAS  PubMed  Google Scholar 

  39. Herchuelz A, Nguidjoe E, Jiang L, Pachera N (2012) β-cell preservation and regeneration in diabetes by modulation of β-cell Ca2+ homeostasis. Diabetes Obes Metab 14:136–142

    Article  CAS  PubMed  Google Scholar 

  40. Failla ML, Gardell CY (1985) Influence of spontaneous diabetes on tissue status of zinc, copper, and manganese in the BB Wistar rat. Proc Soc Exp Biol Med 180:317–322

    Article  CAS  PubMed  Google Scholar 

  41. Simon S (1998) Effects of dietary zinc manipulation on insulin action in type 2 diabetes mellitus: a study in the db/db mouse. Dissertation, University of Manitoba

  42. Marshaii Jk, Hoag S, Hamman RF (1994) Dietary fat predicts conversion from impaired glucose tolerance to MDDM. Diabetes Care 1750–56

  43. Nakhooda AF, Like AA, Chappel CI, Murray FT, Marliss EB (1977) The spontaneously diabetic Wistar rat. Metabolic and morphologic studies. Diabetes 26:100–112

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahiry Gómez.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez, T., Bequer, L., Mollineda, A. et al. Concentration of Zinc, Copper, Iron, Calcium, and Magnesium in the Serum, Tissues, and Urine of Streptozotocin-Induced Mild Diabetic Rat Model. Biol Trace Elem Res 179, 237–246 (2017). https://doi.org/10.1007/s12011-017-0962-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-017-0962-x

Keywords

Navigation