Skip to main content
Log in

Zinc Dyshomeostasis in Cardiomyocytes after Acute Hypoxia/Reoxygenation

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Zinc dyshomeostasis may play a role in the pathogenesis of myocardial ischemia/reperfusion injury. The objective of this study was to investigate the expression profile of zinc regulated transporter like- and iron-regulated transporter-like proteins (ZIPs) and zinc transporter proteins (ZnTs) in cardiomyocytes and their modulation in response to hypoxia and reoxygenation. Adult rat ventricular myocytes (ARVMs) were subjected to 6 h of hypoxia, followed by 18 h of reoxygenation. Intracellular and extracellular zinc concentrations were determined using Fluozin-3 and Newport Green fluorescence, respectively. Expression of ZnTs 1, 2, 5, and 9 along with ZIPs 1, 2, 3, 6, 7, 9, 10, 11, 13, and 14 was detectable in the cardiomyocytes by real-time reverse transcriptase polymerase chain reaction. Hypoxia elicited accumulation of intracellular free zinc, but subsequent reoxygenation resulted in striking loss of intracellular free zinc and decreased the cardiomyocyte viability. Concomitantly, extracellular zinc levels dropped rapidly during hypoxia, but increased after reoxygenation. Immunoblotting analysis revealed that hypoxia increased the expression of ZnT1, but reoxygenation significantly increased the expression of ZnTs 2 and 5. Neither hypoxia nor reoxygenation altered the levels of ZnT9. Increased intracellular zinc at the end of hypoxia is related to enhanced expression of ZIPs, whereas decreased intracellular zinc during reoxygenation appears to be due to lowered expression of all ZIPs, in addition to elevated levels of ZnTs 2 and 5. These results thus suggest that there is impaired accumulation of intracellular zinc during reoxygenation, due to overexpression of specific ZnTs and downregulation of ZIP expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kown MH, Van der Steenhoven T, Blankenberg FG, Hoyt G, Berry GJ, Tait JF, Strauss HW, Robbins RC (2000) Zinc-mediated reduction of apoptosis in cardiac allografts. Circulation 102(19 Suppl 3):III228–III232

    CAS  PubMed  Google Scholar 

  2. Auld DS (2001) Zinc coordination sphere in biochemical zinc sites. Biometals 14(3–4):271–313

    Article  CAS  PubMed  Google Scholar 

  3. Lin CL, Tseng HC, Chen RF, Chen WP, Su MJ, Fang KM, Wu ML (2011) Intracellular zinc release-activated ERK-dependent GSK-3beta-p53 and Noxa-Mcl-1 signaling are both involved in cardiac ischemic-reperfusion injury. Cell Death Differ 18(10):1651–1663. doi:10.1038/cdd.2011.80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Oster O, Dahm M, Oelert H (1993) Element concentrations (selenium, copper, zinc, iron, magnesium, potassium, phosphorous) in heart tissue of patients with coronary heart disease correlated with physiological parameters of the heart. Eur Heart J 14(6):770–774

    Article  CAS  PubMed  Google Scholar 

  5. Palmiter RD, Findley SD (1995) Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. EMBO J 14(4):639–649

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lichten LA, Cousins RJ (2009) Mammalian zinc transporters: nutritional and physiologic regulation. Annu Rev Nutr 29:153–176. doi:10.1146/annurev-nutr-033009-083312

    Article  PubMed  Google Scholar 

  7. Lopez V, Kelleher SL (2009) Zinc transporter-2 (ZnT2) variants are localized to distinct subcellular compartments and functionally transport zinc. Biochem J 422(1):43–52. doi:10.1042/BJ20081189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wenzel HJ, Cole TB, Born DE, Schwartzkroin PA, Palmiter RD (1997) Ultrastructural localization of zinc transporter-3 (ZnT-3) to synaptic vesicle membranes within mossy fiber boutons in the hippocampus of mouse and monkey. Proc Natl Acad Sci U S A 94(23):12676–12681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liuzzi JP, Blanchard RK, Cousins RJ (2001) Differential regulation of zinc transporter 1, 2, and 4 mRNA expression by dietary zinc in rats. J Nutr 131(1):46–52

    CAS  PubMed  Google Scholar 

  10. Kambe T, Narita H, Yamaguchi-Iwai Y, Hirose J, Amano T, Sugiura N, Sasaki R, Mori K, Iwanaga T, Nagao M (2002) Cloning and characterization of a novel mammalian zinc transporter, zinc transporter 5, abundantly expressed in pancreatic beta cells. J Biol Chem 277(21):19049–19055. doi:10.1074/jbc.M200910200

    Article  CAS  PubMed  Google Scholar 

  11. Huang L, Kirschke CP, Gitschier J (2002) Functional characterization of a novel mammalian zinc transporter, ZnT6. J Biol Chem 277(29):26389–26395. doi:10.1074/jbc.M200462200

    Article  CAS  PubMed  Google Scholar 

  12. Kirschke CP, Huang L (2003) ZnT7, a novel mammalian zinc transporter, accumulates zinc in the Golgi apparatus. J Biol Chem 278(6):4096–4102. doi:10.1074/jbc.M207644200

    Article  CAS  PubMed  Google Scholar 

  13. Chimienti F, Devergnas S, Favier A, Seve M (2004) Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes 53(9):2330–2337

    Article  CAS  PubMed  Google Scholar 

  14. Sim DL, Chow VT (1999) The novel human HUEL (C4orf1) gene maps to chromosome 4p12-p13 and encodes a nuclear protein containing the nuclear receptor interaction motif. Genomics 59(2):224–233. doi:10.1006/geno.1999.5856

    Article  CAS  PubMed  Google Scholar 

  15. Bosomworth HJ, Thornton JK, Coneyworth LJ, Ford D, Valentine RA (2012) Efflux function, tissue-specific expression and intracellular trafficking of the Zn transporter ZnT10 indicate roles in adult Zn homeostasis. Metallomics 4(8):771–779. doi:10.1039/c2mt20088k

    Article  CAS  PubMed  Google Scholar 

  16. Patrushev N, Seidel-Rogol B, Salazar G (2012) Angiotensin II requires zinc and downregulation of the zinc transporters ZnT3 and ZnT10 to induce senescence of vascular smooth muscle cells. PLoS One 7(3):e33211. doi:10.1371/journal.pone.0033211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dufner-Beattie J, Langmade SJ, Wang F, Eide D, Andrews GK (2003) Structure, function, and regulation of a subfamily of mouse zinc transporter genes. J Biol Chem 278(50):50142–50150. doi:10.1074/jbc.M304163200

    Article  CAS  PubMed  Google Scholar 

  18. Kelleher SL, Lonnerdal B (2003) Zn transporter levels and localization change throughout lactation in rat mammary gland and are regulated by Zn in mammary cells. J Nutr 133(11):3378–3385

    CAS  PubMed  Google Scholar 

  19. Dufner-Beattie J, Kuo YM, Gitschier J, Andrews GK (2004) The adaptive response to dietary zinc in mice involves the differential cellular localization and zinc regulation of the zinc transporters ZIP4 and ZIP5. J Biol Chem 279(47):49082–49090. doi:10.1074/jbc.M409962200

    Article  CAS  PubMed  Google Scholar 

  20. Weaver BP, Dufner-Beattie J, Kambe T, Andrews GK (2007) Novel zinc-responsive post-transcriptional mechanisms reciprocally regulate expression of the mouse Slc39a4 and Slc39a5 zinc transporters (Zip4 and Zip5). Biol Chem 388(12):1301–1312. doi:10.1515/BC.2007.149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kong BY, Duncan FE, Que EL, Kim AM, O'Halloran TV, Woodruff TK (2014) Maternally-derived zinc transporters ZIP6 and ZIP10 drive the mammalian oocyte-to-egg transition. Mol Hum Reprod 20(11):1077–1089. doi:10.1093/molehr/gau066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Taylor KM, Morgan HE, Johnson A, Nicholson RI (2005) Structure-function analysis of a novel member of the LIV-1 subfamily of zinc transporters, ZIP14. FEBS Lett 579(2):427–432. doi:10.1016/j.febslet.2004.12.006

    Article  CAS  PubMed  Google Scholar 

  23. Huang L, Kirschke CP, Zhang Y, Yu YY (2005) The ZIP7 gene (Slc39a7) encodes a zinc transporter involved in zinc homeostasis of the Golgi apparatus. J Biol Chem 280(15):15456–15463. doi:10.1074/jbc.M412188200

    Article  CAS  PubMed  Google Scholar 

  24. Grubman A, Lidgerwood GE, Duncan C, Bica L, Tan JL, Parker SJ, Caragounis A, Meyerowitz J, Volitakis I, Moujalled D, Liddell JR, Hickey JL, Horne M, Longmuir S, Koistinaho J, Donnelly PS, Crouch PJ, Tammen I, White AR, Kanninen KM (2014) Deregulation of subcellular biometal homeostasis through loss of the metal transporter, Zip7, in a childhood neurodegenerative disorder. Acta Neuropathol Commun 2:25. doi:10.1186/2051-5960-2-25

    Article  PubMed  PubMed Central  Google Scholar 

  25. Aydemir TB, Liuzzi JP, McClellan S, Cousins RJ (2009) Zinc transporter ZIP8 (SLC39A8) and zinc influence IFN-gamma expression in activated human T cells. J Leukoc Biol 86(2):337–348. doi:10.1189/jlb.1208759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Begum NA, Kobayashi M, Moriwaki Y, Matsumoto M, Toyoshima K, Seya T (2002) Mycobacterium bovis BCG cell wall and lipopolysaccharide induce a novel gene, BIGM103, encoding a 7-TM protein: identification of a new protein family having Zn-transporter and Zn-metalloprotease signatures. Genomics 80(6):630–645

    Article  CAS  PubMed  Google Scholar 

  27. Matsuura W, Yamazaki T, Yamaguchi-Iwai Y, Masuda S, Nagao M, Andrews GK, Kambe T (2009) SLC39A9 (ZIP9) regulates zinc homeostasis in the secretory pathway: characterization of the ZIP subfamily I protein in vertebrate cells. Biosci Biotechnol Biochem 73(5):1142–1148. doi:10.1271/bbb.80910

    Article  CAS  PubMed  Google Scholar 

  28. Thomas P, Pang Y, Dong J, Berg AH (2014) Identification and characterization of membrane androgen receptors in the ZIP9 zinc transporter subfamily: II. Role of human ZIP9 in testosterone-induced prostate and breast cancer cell apoptosis. Endocrinology 155(11):4250–4265. doi:10.1210/en.2014-1201

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lichten LA, Ryu MS, Guo L, Embury J, Cousins RJ (2011) MTF-1-mediated repression of the zinc transporter Zip10 is alleviated by zinc restriction. PLoS One 6(6):e21526. doi:10.1371/journal.pone.0021526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kelleher SL, Velasquez V, Croxford TP, McCormick NH, Lopez V, MacDavid J (2012) Mapping the zinc-transporting system in mammary cells: molecular analysis reveals a phenotype-dependent zinc-transporting network during lactation. J Cell Physiol 227(4):1761–1770. doi:10.1002/jcp.22900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Martin AB, Aydemir TB, Guthrie GJ, Samuelson DA, Chang SM, Cousins RJ (2013) Gastric and colonic zinc transporter ZIP11 (Slc39a11) in mice responds to dietary zinc and exhibits nuclear localization. J Nutr 143(12):1882–1888. doi:10.3945/jn.113.184457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yu Y, Wu A, Zhang Z, Yan G, Zhang F, Zhang L, Shen X, Hu R, Zhang Y, Zhang K, Wang F (2013) Characterization of the GufA subfamily member SLC39A11/Zip11 as a zinc transporter. J Nutr Biochem 24(10):1697–1708. doi:10.1016/j.jnutbio.2013.02.010

    Article  CAS  PubMed  Google Scholar 

  33. Chowanadisai W, Graham DM, Keen CL, Rucker RB, Messerli MA (2013) Neurulation and neurite extension require the zinc transporter ZIP12 (slc39a12). Proc Natl Acad Sci U S A 110(24):9903–9908. doi:10.1073/pnas.1222142110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kamalov G, Deshmukh PA, Baburyan NY, Gandhi MS, Johnson PL, Ahokas RA, Bhattacharya SK, Sun Y, Gerling IC, Weber KT (2009) Coupled calcium and zinc dyshomeostasis and oxidative stress in cardiac myocytes and mitochondria of rats with chronic aldosteronism. J Cardiovasc Pharmacol 53(5):414–423. doi:10.1097/FJC.0b013e3181a15e77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Deniro M, Al-Mohanna FA (2012) Zinc transporter 8 (ZnT8) expression is reduced by ischemic insults: a potential therapeutic target to prevent ischemic retinopathy. PLoS One 7(11):e50360. doi:10.1371/journal.pone.0050360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tsuda M, Imaizumi K, Katayama T, Kitagawa K, Wanaka A, Tohyama M, Takagi T (1997) Expression of zinc transporter gene, ZnT-1, is induced after transient forebrain ischemia in the gerbil. J Neurosci 17(17):6678–6684

    CAS  PubMed  Google Scholar 

  37. Malairaman U, Dandapani K, Katyal A (2014) Effect of Ca2EDTA on zinc mediated inflammation and neuronal apoptosis in hippocampus of an in vivo mouse model of hypobaric hypoxia. PLoS One 9(10):e110253. doi:10.1371/journal.pone.0110253

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gerber PA, Bellomo EA, Hodson DJ, Meur G, Solomou A, Mitchell RK, Hollinshead M, Chimienti F, Bosco D, Hughes SJ, Johnson PR, Rutter GA (2014) Hypoxia lowers SLC30A8/ZnT8 expression and free cytosolic Zn2+ in pancreatic beta cells. Diabetologia 57(8):1635–1644. doi:10.1007/s00125-014-3266-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yu Z, Quamme GA, McNeill JH (1994) Depressed [Ca2+]i responses to isoproterenol and cAMP in isolated cardiomyocytes from experimental diabetic rats. Am J Phys 266(6 Pt 2):H2334–H2342

    CAS  Google Scholar 

  40. Short M, Nemenoff RA, Zawada WM, Stenmark KR, Das M (2004) Hypoxia induces differentiation of pulmonary artery adventitial fibroblasts into myofibroblasts. Am J Physiol Cell Physiol 286(2):C416–C425. doi:10.1152/ajpcell.00169.2003

    Article  CAS  PubMed  Google Scholar 

  41. Karagulova G, Yue Y, Moreyra A, Boutjdir M, Korichneva I (2007) Protective role of intracellular zinc in myocardial ischemia/reperfusion is associated with preservation of protein kinase C isoforms. J Pharmacol Exp Ther 321(2):517–525. doi:10.1124/jpet.107.119644

    Article  CAS  PubMed  Google Scholar 

  42. Bodiga VL, Thokala S, Vemuri PK, Bodiga S (2015) Zinc pyrithione inhibits caspase-3 activity, promotes ErbB1-ErbB2 heterodimerization and suppresses ErbB2 downregulation in cardiomyocytes subjected to ischemia/reperfusion. J Inorg Biochem 153:49–59. doi:10.1016/j.jinorgbio.2015.09.010

    Article  CAS  PubMed  Google Scholar 

  43. Viswanath K, Bodiga S, Balogun V, Zhang A, Bodiga VL (2011) Cardioprotective effect of zinc requires ErbB2 and Akt during hypoxia/reoxygenation. Biometals 24(1):171–180. doi:10.1007/s10534-010-9371-8

    Article  CAS  PubMed  Google Scholar 

  44. Kasi V, Bodiga S, Kommuguri UN, Sankuru S, Bodiga VL (2011) Zinc pyrithione salvages reperfusion injury by inhibiting NADPH oxidase activation in cardiomyocytes. Biochem Biophys Res Commun 410(2):270–275. doi:10.1016/j.bbrc.2011.05.130

    Article  CAS  PubMed  Google Scholar 

  45. Wang F, Kim BE, Petris MJ, Eide DJ (2004) The mammalian Zip5 protein is a zinc transporter that localizes to the basolateral surface of polarized cells. J Biol Chem 279(49):51433–51441. doi:10.1074/jbc.M408361200

    Article  CAS  PubMed  Google Scholar 

  46. Wang F, Dufner-Beattie J, Kim BE, Petris MJ, Andrews G, Eide DJ (2004) Zinc-stimulated endocytosis controls activity of the mouse ZIP1 and ZIP3 zinc uptake transporters. J Biol Chem 279(23):24631–24639. doi:10.1074/jbc.M400680200

    Article  CAS  PubMed  Google Scholar 

  47. Kim BE, Wang F, Dufner-Beattie J, Andrews GK, Eide DJ, Petris MJ (2004) Zn2+−stimulated endocytosis of the mZIP4 zinc transporter regulates its location at the plasma membrane. J Biol Chem 279(6):4523–4530. doi:10.1074/jbc.M310799200

    Article  CAS  PubMed  Google Scholar 

  48. Fujishiro H, Yano Y, Takada Y, Tanihara M, Himeno S (2012) Roles of ZIP8, ZIP14, and DMT1 in transport of cadmium and manganese in mouse kidney proximal tubule cells. Metallomics 4(7):700–708. doi:10.1039/c2mt20024d

    Article  CAS  PubMed  Google Scholar 

  49. Zhao N, Zhang AS, Worthen C, Knutson MD, Enns CA (2014) An iron-regulated and glycosylation-dependent proteasomal degradation pathway for the plasma membrane metal transporter ZIP14. Proc Natl Acad Sci U S A 111(25):9175–9180. doi:10.1073/pnas.1405355111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Andrews GK (2001) Cellular zinc sensors: MTF-1 regulation of gene expression. Biometals 14(3–4):223–237

    Article  CAS  PubMed  Google Scholar 

  51. Beharier O, Dror S, Levy S, Kahn J, Mor M, Etzion S, Gitler D, Katz A, Muslin AJ, Moran A, Etzion Y (2012) ZnT-1 protects HL-1 cells from simulated ischemia-reperfusion through activation of Ras-ERK signaling. J Mol Med (Berl) 90(2):127–138. doi:10.1007/s00109-011-0845-0

    Article  CAS  Google Scholar 

  52. Palmiter RD (2004) Protection against zinc toxicity by metallothionein and zinc transporter 1. Proc Natl Acad Sci U S A 101(14):4918–4923. doi:10.1073/pnas.0401022101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Segal D, Ohana E, Besser L, Hershfinkel M, Moran A, Sekler I (2004) A role for ZnT-1 in regulating cellular cation influx. Biochem Biophys Res Commun 323(4):1145–1150. doi:10.1016/j.bbrc.2004.08.211

    Article  CAS  PubMed  Google Scholar 

  54. Suzuki T, Ishihara K, Migaki H, Matsuura W, Kohda A, Okumura K, Nagao M, Yamaguchi-Iwai Y, Kambe T (2005) Zinc transporters, ZnT5 and ZnT7, are required for the activation of alkaline phosphatases, zinc-requiring enzymes that are glycosylphosphatidylinositol-anchored to the cytoplasmic membrane. J Biol Chem 280(1):637–643. doi:10.1074/jbc.M411247200

    Article  CAS  PubMed  Google Scholar 

  55. Yang J, Zhang Y, Cui X, Yao W, Yu X, Cen P, Hodges SE, Fisher WE, Brunicardi FC, Chen C, Yao Q, Li M (2013) Gene profile identifies zinc transporters differentially expressed in normal human organs and human pancreatic cancer. Curr Mol Med 13(3):401–409

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from DST-SERB, Govt. of India (No. SB/YS/LS-222/2013), University Grants Commission (F. No.4-5(28)/2013(BSR) (FRP)) to SB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreedhar Bodiga.

Ethics declarations

Ethics Statement

This investigation was approved by the Institutional Animal Ethics Committee, Kakatiya University, registered under “Committee for the Purpose of Control and Supervision of Experiments on Laboratory Animals,” Ministry of Environment and Forests, Government of India, and conforms with the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health Publication 85–23, revised 1996.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bodiga, V.L., Thokala, S., Kovur, S.M. et al. Zinc Dyshomeostasis in Cardiomyocytes after Acute Hypoxia/Reoxygenation. Biol Trace Elem Res 179, 117–129 (2017). https://doi.org/10.1007/s12011-017-0957-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-017-0957-7

Keywords

Navigation