Skip to main content

Advertisement

Log in

Cardioprotective effect of zinc requires ErbB2 and Akt during hypoxia/reoxygenation

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Recent literature suggests that exogenous zinc can prevent ischemia reperfusion injury by activating phosphoinositide-3 kinase (PI3K)/Akt and by targeting the mitochondrial permeability transition pore (mPTP). It is known that ErbB2 expression promotes association and activation of PI3-kinase/Akt, resulting in growth and survival of cardiac myocytes. In this study, we found that zinc-induced ErbB2 protein expression and Akt activation are required for preventing reperfusion injury. Neonatal rat cardiac myocytes subjected to 8 h of hypoxia, followed by 16 h of reoxygenation induced cardiomyocyte apoptosis, as assessed by increased caspase-3 activity, annexin V staining and lowered MTT reduction and ATP levels. However, addition of zinc-pyrithione (ZPT) before onset of reoxygenation effectively lowered the apoptotic indices and restored the ATP levels. ZPT induced a significant increase in ErbB2 protein expression and Akt activation. Pretreatment with Hsp 90 inhibitor, geldanamycin or PI3-kinase inhibitor, wortmannin prevented the increase in ATP levels and abrogated the protective effect of zinc-pyrithione. Taken together, these data suggest that zinc prevents reperfusion injury by modulating the ErbB2 protein expression and Akt activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Apostolova MD, Ivanova IA, Cherian MG (1999) Metallothionein and apoptosis during differentiation of myoblasts to myotubes: protection against free radical toxicity. Toxicol Appl Pharmacol 159:175–184

    Article  CAS  PubMed  Google Scholar 

  • Baliga RR, Pimental DR, Zhao YY, Simmons WW, Marchionni MA, Sawyer DB, Kelly RA (1999) NRG-1-induced cardiomyocyte hypertrophy. Role of PI-3-kinase, p70(S6K), and MEK-MAPK-RSK. Am J Physiol 277:H2026–H2037

    CAS  PubMed  Google Scholar 

  • Bancila V, Nikonenko I, Dunant Y, Bloc A (2004) Zinc inhibits glutamate release via activation of pre-synaptic KATP channels and reduces ischaemic damage in rat hippocampus. J Neurochem 90:1243–1250

    Article  CAS  PubMed  Google Scholar 

  • Beyersmann D, Hasse H (2001) Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals 14:331–341

    Article  CAS  PubMed  Google Scholar 

  • Bialik S, Cryns VL, Drincic A, Miyata S, Wollowick AL, Srinivasan A, Kitsis RN (1999) The mitochondrial apoptotic pathway is activated by serum and glucose deprivation in cardiac myocytes. Circ Res 85:403–414

    CAS  PubMed  Google Scholar 

  • Bodiga S, Zhang R, Jacobs DE, Larsen BT, Tampo A, Manthati VL, Kwok WM, Zeldin DC, Falck JR, Gutterman DD, Jacobs ER, Medhora MM (2009) Protective actions of epoxyeicosatrienoic acid: dual targeting of cardiovascular PI3K and KATP channels. J Mol Cell Cardiol 46:978–988

    Article  CAS  PubMed  Google Scholar 

  • Buja LM, Eigenbrodt ML, Eigenbrodt EH (1993) Apoptosis and necrosis. Basic types and mechanisms of cell death. Arch Pathol Lab Med 117:1208–1214

    CAS  PubMed  Google Scholar 

  • Chanoit G, Lee S, Xi J, Zhu M, McIntosh RA, Mueller RA, Norfleet EA, Xu Z (2008) Exogenous zinc protects cardiac cells from reperfusion injury by targeting mitochondrial permeability transition pore through inactivation of glycogen synthase kinase-3beta. Am J Physiol Heart Circ Physiol 295:H1227–H1233

    Article  CAS  PubMed  Google Scholar 

  • Chanoit G, Lee S, Xu Z (2009) Reply to “letter to the editor: ‘zinc and cardioprotection: the missing link’ ”. Am J Physiol 296:H235

    CAS  Google Scholar 

  • Chavany C, Mimnaugh E, Miller P, Bitton R, Nguyen P, Trepel J, Whitesell L, Schnur R, Moyer J, Neckers L (1996) p185erbB2 binds to GRP94 in vivo. Dissociation of the p185erbB2/GRP94 heterocomplex by benzoquinone ansamycins precedes depletion of p185erbB2. J Biol Chem 271:4974–4977

    Article  CAS  PubMed  Google Scholar 

  • Coudray C, Charlon V, de Leiris J, Favier A (1993) Effect of zinc deficiency on lipid peroxidation status and infarct size in rat hearts. Int J Cardiol 41:109–113

    Article  CAS  PubMed  Google Scholar 

  • Crone SA, Zhao YY, Fan L, Gu Y, Minamisawa S, Liu Y, Peterson KL, Chen J, Kahn R, Condorelli G, Ross J Jr, Chien KR, Lee KF (2002) ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat Med 8:459–465

    Article  CAS  PubMed  Google Scholar 

  • Fuller SJ, Sivarajah K, Sugden PH (2008) ErbB receptors, their ligands, and the consequences of their activation and inhibition in the myocardium. J Mol Cell Cardiol 44:831–854

    Article  CAS  PubMed  Google Scholar 

  • Galasso SL, Dyck RH (2007) The role of zinc in cerebral ischemia. Mol Med 13:380–387

    Article  CAS  PubMed  Google Scholar 

  • Giannakis C, Forbes IJ, Zalewski PD (1991) Ca2+/Mg2+-dependent nuclease: tissue distribution, relationship to inter-nucleosomal DNA fragmentation and inhibition by Zn2+. Biochem Biophys Res Commun 181:915–920

    Article  CAS  PubMed  Google Scholar 

  • Gordon LI, Burke MA, Singh AT, Prachand S, Lieberman ED, Sun L, Naik TJ, Prasad SV, Ardehali H (2009) Blockade of the erbB2 receptor induces cardiomyocyte death through mitochondrial and reactive oxygen species-dependent pathways. J Biol Chem 284:2080–2087

    Article  CAS  PubMed  Google Scholar 

  • Grazette LP, Boecker W, Matsui T, Semigran M, Force TL, Hajjar RJ, Rosenzweig A (2004) Inhibition of ErbB2 causes mitochondrial dysfunction in cardiomyocytes: implications for herceptin-induced cardiomyopathy. J Am Coll Cardiol 44:2231–2238

    Article  CAS  PubMed  Google Scholar 

  • Griffin TM, Valdez TV, Mestril R (2004) Radicicol activates heat shock protein expression and cardioprotection in neonatal rat cardiomyocytes. Am J Physiol Heart Circ Physiol 287:H1081–H1088

    Article  CAS  PubMed  Google Scholar 

  • Hellyer NJ, Kim MS, Koland JG (2001) Heregulin-dependent activation of phosphoinositide 3-kinase and Akt via the ErbB2/ErbB3 co-receptor. J Biol Chem 276:42153–42161

    Article  CAS  PubMed  Google Scholar 

  • Jacob C, Maret W, Vallee BL (1998) Control of zinc transfer between thionein, metallothionein, and zinc proteins. Proc Natl Acad Sci USA 95:3489–3494

    Article  CAS  PubMed  Google Scholar 

  • Kang YJ, Li G, Saari T (1999) Metallothionein inhibits ischemia-reperfusion injury in mouse heart. Am J Physiol 276:H993–H997

    CAS  PubMed  Google Scholar 

  • Karagulova G, Yue Y, Moreyra A, Boutjdir M, Korichneva I (2007) Protective role of intracellular zinc in myocardial ischemia/reperfusion is associated with preservation of protein kinase C isoforms. J Pharmacol Exp Ther 321:517–525

    Article  CAS  PubMed  Google Scholar 

  • Krezel A, Hao Q, Maret W (2007) The zinc/thiolate redox biochemistry of metallothionein and the control of zinc ion fluctuations in cell signaling. Arch Biochem Biophys 463:188–200

    Article  CAS  PubMed  Google Scholar 

  • Kupatt C, Dessy C, Hinkel R, Raake P, Daneau G, Bouzin C, Boekstegers P, Feron O (2004) Heat shock protein 90 transfection reduces ischemia-reperfusion-induced myocardial dysfunction via reciprocal endothelial NO synthase serine 1177 phosphorylation and threonine 495 dephosphorylation. Arterioscler Thromb Vasc Biol 24:1435–1441

    Article  CAS  PubMed  Google Scholar 

  • Lal A (1991) Effect of zinc sulphate on infarct size in experimental myocardial infarction in dogs. Indian J Med Res 94:316–319

    CAS  PubMed  Google Scholar 

  • Lee S, Chanoit G, McIntosh R, Zvara DA, Xu Z (2009) Molecular mechanism underlying Akt activation in zinc-induced cardioprotection. Am J Physiol Heart Circ Physiol 297:H569–H575

    Article  CAS  PubMed  Google Scholar 

  • Malhotra R, Brosius FC III (1999) Glucose uptake and glycolysis reduce hypoxia-induced apoptosis in cultured neonatal rat cardiac myocytes. J Biol Chem 274:12567–12575

    Article  CAS  PubMed  Google Scholar 

  • Maret W (1995) Metallothionein/disulfide interactions, oxidative stress, and the mobilization of cellular zinc. Neurochem Int 27:111–117

    Article  CAS  PubMed  Google Scholar 

  • Mizukami Y, Iwamatsu A, Aki T, Kimura M, Nakamura K, Nao T, Okusa T, Matsuzaki M, Yoshida K, Kobayashi S (2004) ERK1/2 regulates intracellular ATP levels through alpha-enolase expression in cardiomyocytes exposed to ischemic hypoxia and reoxygenation. J Biol Chem 279:50120–50131

    Article  CAS  PubMed  Google Scholar 

  • Mocanu MM, Yellon DM (2009) Letter to the editor: “zinc and cardioprotection: the missing link”. Am J Physiol 296:H233–H234

    CAS  Google Scholar 

  • Muthuswamy SK, Gilman M, Brugge JS (1999) Controlled dimerization of ErbB receptors provides evidence for differential signaling by homo- and heterodimers. Mol Cell Biol 19:6845–6857

    CAS  PubMed  Google Scholar 

  • Neckers L (2002) Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med 8:S55–S61

    Article  CAS  PubMed  Google Scholar 

  • Nicotera P, Leist M, Ferrando-May E (1998) Intracellular ATP, a switch in the decision between apoptosis and necrosis. Toxicol Lett 102–103:139–142

    Article  PubMed  Google Scholar 

  • Peng X, Guo X, Borkan SC, Bharti A, Kuramochi Y, Calderwood S, Sawyer DB (2005) Heat shock protein 90 stabilization of ErbB2 expression is disrupted by ATP depletion in myocytes. J Biol Chem 280:13148–13152

    Article  CAS  PubMed  Google Scholar 

  • Plas DR, Talapatra S, Edinger AL, Rathmell JC, Thompson CB (2001) Akt and Bcl-xL promote growth factor-independent survival through distinct effects on mitochondrial physiology. J Biol Chem 276:12041–12048

    Article  CAS  PubMed  Google Scholar 

  • Powell SR, Aiuto L, Hall D, Tortolani AJ (1995) Zinc supplementation enhances the effectiveness of St. Thomas’ Hospital No. 2 cardioplegic solution in an in vitro model of hypothermic cardiac arrest. J Thorac Cardiovasc Surg 110:1642–1648

    Article  CAS  PubMed  Google Scholar 

  • Pugatsch T, Abedat S, Lotan C, Beeri R (2006) Anti-erbB2 treatment induces cardiotoxicity by interfering with cell survival pathways. Breast Cancer Res 8:R35

    Article  PubMed  Google Scholar 

  • Reed JC, Paternostro G (1999) Postmitochondrial regulation of apoptosis during heart failure. Proc Natl Acad Sci U A 96:7614–7616

    Article  CAS  Google Scholar 

  • Shiraishi J, Tatsumi T, Keira N, Akashi K, Mano A, Yamanaka S, Matoba S, Asayama J, Yaoi T, Fushiki S, Fliss H, Nakagawa M (2001) Important role of energy-dependent mitochondrial pathways in cultured rat cardiac myocyte apoptosis. Am J Physiol Heart Circ Physiol 281:H1637–H1647

    CAS  PubMed  Google Scholar 

  • Stanley WC, Chandler MP (2002) Energy metabolism in the normal and failing heart: potential for therapeutic interventions. Heart Fail Rev 7:115–130

    Article  CAS  PubMed  Google Scholar 

  • Taimor G, Lorenz H, Hofstaetter B, Schluter KD, Piper HM (1999) Induction of necrosis but not apoptosis after anoxia and reoxygenation in isolated adult cardiomyocytes of rat. Cardiovasc Res 41:147–156

    Article  CAS  PubMed  Google Scholar 

  • Thornalley PJ, Vasak M (1985) Possible role for metallothionein in protection against radiation-induced oxidative stress: Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals. Biochim Biophys Acta 827:36–44

    Article  CAS  PubMed  Google Scholar 

  • Vali L, Stefanovits-Banyai E, Szentmihalyi K, Drahos A, Sardy M, Febel H, Feher E, Bokori E, Kocsis I, Blazovics A (2008) Alterations in the content of metal elements and fatty acids in hepatic ischemia-reperfusion: induction of apoptotic and necrotic cell death. Dig Dis Sci 53:1325–1333

    Article  CAS  PubMed  Google Scholar 

  • White RL, Wittenberg BA (2000) Mitochondrial NAD(P)H, ADP, oxidative phosphorylation, and contraction in isolated heart cells. Am J Physiol Heart Circ Physiol 279:H1849–H1857

    CAS  PubMed  Google Scholar 

  • Xu W, Mimnaugh E, Rosser MF, Nicchitta C, Marcu M, Yarden Y, Neckers L (2001) Sensitivity of mature Erbb2 to geldanamycin is conferred by its kinase domain and is mediated by the chaperone protein Hsp90. J Biol Chem 276:3702–3708

    Article  CAS  PubMed  Google Scholar 

  • Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2:127–137

    Article  CAS  PubMed  Google Scholar 

  • Zaarur N, Gabai VL, Porco JA Jr, Calderwood S, Sherman MY (2006) Targeting heat shock response to sensitize cancer cells to proteasome and Hsp90 inhibitors. Cancer Res 66:1783–1791

    Article  CAS  PubMed  Google Scholar 

  • Zeng J, Heuchel R, Scahffner W, Kagi JH (1991) Thionein (apometallothionein) can modulate DNA binding and transcription activation by zinc finger containing factor Sp1. FEBS Lett 279:310–312

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijaya Lakshmi Bodiga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viswanath, K., Bodiga, S., Balogun, V. et al. Cardioprotective effect of zinc requires ErbB2 and Akt during hypoxia/reoxygenation. Biometals 24, 171–180 (2011). https://doi.org/10.1007/s10534-010-9371-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-010-9371-8

Keywords

Navigation