Skip to main content

Advertisement

Log in

A Study on the Anticarcinogenic Effects of Calcium Fructoborate

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Evidences about the preventive and therapeutic effects of boron compounds on cancer have been increasing in the last years. Although calcium fructoborate (CaFB) is used as a nutritional supplement, data about its preventive and therapeutic effects on neoplastic transformations are limited. In the present study, the various concentrations of CaFB were applied to the MDA-MB-231 metastatic breast cancer cell line. First, we examined the cytotoxic effect and IC50 value of CaFB by MTT assay. For the evaluation of the DNA damage, apoptosis and metastatic potential, expression levels of ATM, pATM, PARP, p53, p-p53, caspase-3, caspase-9, and VEGF were investigated by using immunoblotting and immunohistochemical methods. Cell viability was significantly reduced at 50 μM CaFB treatment. pATM, p-p53, and caspase-9 levels increased significantly in all groups; furthermore, there was approximately 12.5-, 2.4-, and 10.7-fold increase, respectively, for 100 μM CaFB treatment. ATM and p53 levels did not change with CaFB treatment, but PARP levels significantly 2.5-fold decreased. While VEGF immunoreactivity decreased in all groups, significant increase in caspase-3 immunoreactivity was observed only in the group treated with 50 μM CaFB (p < 0,001). Our results imply that CaFB may have therapeutic potential as well as preventive benefits in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. International Agency for Research on Cancer—WHO (2012)

  2. Tangutoori S, Baldwin P, Sridhar S (2015) PARP inhibitors: a new era of targeted therapy. Maturitas 81(1):5–9

    Article  CAS  PubMed  Google Scholar 

  3. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60(5):277–300

    Article  PubMed  Google Scholar 

  4. Giovannini M, Aldrighetti D, Zucchinelli P, Belli C, Villa E (2010) Antiangiogenic strategies in breast cancer management. Crit Rev Oncol Hematol 76(1):13–35

    Article  PubMed  Google Scholar 

  5. Nielsen FH (2014) Update on human health effects of boron. J Trace Elem Med Biol 28(4):383–387

    Article  CAS  PubMed  Google Scholar 

  6. Hunt CD (2012) Dietary boron: progress in establishing essential roles in human physiology. J Trace Elem Med Biol 26(2–3):157–160

    Article  CAS  PubMed  Google Scholar 

  7. Scorei ID, Scorei RI (2013) Calcium fuctoborate helps control inflammation associated with diminished bone health. Biol Trace Elem Res 155(3):315–321

    Article  CAS  PubMed  Google Scholar 

  8. Mogoşanu GD, Bită A, Bejenaru LE, Croitoru O, Rău G, Rogoveanu OC, Florescu DN, Neamtu J, Scorei ID, Scorei RI (2015) Calcium fructoborate for bone and cardiovascular health. Biol Trace Elem Res. doi:10.1007/s12011-015-0590-2

    PubMed Central  Google Scholar 

  9. Penland JG (1998) The importance of boron nutrition for brain and psychological function. Biol Trace Elem Res 66(1–3):299–317

    Article  CAS  PubMed  Google Scholar 

  10. Nielsen FH, Penland JG (1999) Boron supplementation of peri-menopausal women affects boron metabolism and indices associated with macromineral metabolism, hormonal status and immune function. J Trace Elem Exper Med 12(3):251–261

    Article  CAS  Google Scholar 

  11. Nielsen FH, Gallagher SK, Johnson LK, Nielsen EJ (1992) Boron enhances and mimics some effects of estrogen therapy in postmenopausal women. J Trace Elem Exp Med 5:237–246

    CAS  Google Scholar 

  12. Nielsen FH, Meacham SL (2011) Growing evidence for human health benefits of boron. J Evid Based Complement Alternat Med 16(3):169–180

    Article  CAS  Google Scholar 

  13. Cui Y, Winton MI, Zhang ZF, Rainey C, Marshall J, De Kernion JB, Eckhert CD (2004) Dietary boron intake and prostate cancer risk. Oncol Rep 11(4):887–892

    CAS  PubMed  Google Scholar 

  14. Barranco WT, Eckhert CD (2004) Boric acid inhibits human prostate cancer cell proliferation. Cancer Lett 216(1):21–29

    Article  CAS  PubMed  Google Scholar 

  15. Barranco WT, Hudak PF, Eckhert CD (2007) Evaluation of ecological and in vitro effects of boron on prostate cancer risk (United States). Cancer Causes Control 18(1):71–77

    Article  PubMed  Google Scholar 

  16. Korkmaz M, Uzgören E, Bakirdere S, Aydin F, Ataman OY (2007) Effects of dietary boron on cervical cytopathology and on micronucleus frequency in exfoliated buccal cells. Environ Toxicol 22(1):17–25

    Article  CAS  PubMed  Google Scholar 

  17. Scorei R, Ciubar R, Ciofrangeanu CM, Mitran V, Cimpean A, Iordachescu D (2008) Comparative effects of boric acid and calcium fructoborate on breast cancer cells. Biol Trace Elem Res 122(3):197–205

    Article  CAS  PubMed  Google Scholar 

  18. Kane RC, Bross PF, Farrell AT, Pazdur R (2003) Velcade: U.S.A. FDA approval for the treatment of multiple myeloma progressing on prior therapy. Oncologist 8(6):508–513

    Article  PubMed  Google Scholar 

  19. Scorei ID, Scorei RI (2013) Calcium fructoborate helps control inflammation associated with diminished bone health. Biol Trace Elem Res 155(3):315–321

    Article  CAS  PubMed  Google Scholar 

  20. Marone AP, Heimbach JT, Nemzer B, Hunter JM (2016) Subchronic and genetic safety evaluation of a calcium fructoborate in rats. Food Chem Toxicol 95:75–88

    Article  CAS  PubMed  Google Scholar 

  21. Miljkovic D, Scorei RI, Cimpoiaşu VM, Scorei ID (2009) Calcium fructoborate: plant-based dietary boron for human nutrition. J Diet Suppl 6(3):211–226

    Article  PubMed  Google Scholar 

  22. Miljkovic D (1998) Boron carbohydrate complexes and uses thereof. Patent US 5962049 A

  23. Scorei RI, Rotaru P (2011) Calcium fructoborate—potential antiinflammatory agent. Biol Trace Elem Res 143(3):1223–1238

    Article  CAS  PubMed  Google Scholar 

  24. Scorei R, Cimpoiasu VM, Iordachescu D (2005) In vitro evaluation of the antioxidant activity of calcium fructoborate. Biol Trace Elem Res 107(2):127–134

    Article  CAS  PubMed  Google Scholar 

  25. Scorei R, Mitrut P, Petrusor I, Scorei I (2011) A double-blind, placebo-controlled pilot study to evaluate the effect of calcium fructoborate on systemic inflammation and dyslipidemia markers for middle-aged people with primary osteoarthritis. Biol Trace Elem Res 143(3):1223–1238

    Article  CAS  PubMed  Google Scholar 

  26. Militaru C, Donoiu I, Craciun A, Scorei ID, Bulearca AM, Scorei RI (2013) Oral resveratrol and calcium fructoborate supplementation in subjects with stable angina pectoris: effects on lipid profiles, inflammation markers, and quality of life. Nutrition 29(1):178–183

    Article  CAS  PubMed  Google Scholar 

  27. Mogoşanu GD, Biţã A, Bejenaru LE, Bejenaru C, Croitoru O, Rãu G, Rogoveanu OC, Florescu DN, Neamţu J, Scorei ID, Scorei RI (2016) Calcium fructoborate for bone and cardiovascular health. Biol Trace Elem Res 172(2):277–281

    Article  PubMed  Google Scholar 

  28. Scorei RI, Popa R (2013) Sugar-borate esters-potential chemical agents in prostate cancer chemoprevention. Anti Cancer Agents Med Chem 13(6):901–909

    Article  CAS  Google Scholar 

  29. Scorei R, Ciubar R, Iancu C, Mitran V, Cimpean A, Iordachescu D (2007) In vitro effects of calcium fructoborate on fMLP-stimulated human neutrophil granulocytes. Biol Trace Elem Res 118(1):27–37

    Article  CAS  PubMed  Google Scholar 

  30. Park M, Li Q, Shcheynikov N, Zeng W, Muallem S (2004) NaBC1 is a ubiquitous electrogenic Na + −coupled borate transporter essential for cellular boron homeostasis and cell growth and proliferation. Mol Cell 16(3):331–341

    Article  CAS  PubMed  Google Scholar 

  31. Reed JC (1998) Dysregulation of apoptosis in cancer. Cancer J Sci Am 4(Suppl 1):S8–14

    PubMed  Google Scholar 

  32. Fulda S (2015) Targeting extrinsic apoptosis in cancer: challenges and opportunities. Semin Cell Dev Biol 39:20–25

    Article  CAS  PubMed  Google Scholar 

  33. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257

    Article  CAS  PubMed  Google Scholar 

  34. Fakhrejahani E, Toi M (2014) Antiangiogenesis therapy for breast cancer: an update and perspectives from clinical trials. Jpn J Clin Oncol 44(3):197–207

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lindhal T (1993) Instability and decay of the primary structure of DNA. Nature 362(6422):709–715

    Article  Google Scholar 

  36. Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40(2):179–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Weber AM, Ryan AJ (2015) ATM and ATR as therapeutic targets in cancer. Pharmacol Ther 149:124–138

    Article  CAS  PubMed  Google Scholar 

  38. Maréchal A, Zou L (2013) DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol 5(9)

  39. van Gent DC, Hoeijmakers JH, Kanaar R (2001) Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet 2(3):196–206

    Article  PubMed  Google Scholar 

  40. Pflaum J, Schlosser S, Müller M (2014) p53 family and cellular stress responses in cancer. Front Oncol 4:285

    Article  PubMed  PubMed Central  Google Scholar 

  41. Morales J, Li L, Fattah FJ, Dong Y, Bey EA, Patel M, Gao J, Boothman DA (2014) Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Crit Rev Eukaryot Gene Expr 24(1):15–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pop C, Salvesen GS (2009) Human caspases: activation, specificity, and regulation. J Biol Chem 284(33):21777–21781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hunt CD (1998) Regulation of enzymatic activity: one possible role of dietary boron in higher animals and humans. Biol Trace Elem Res 66(1–3):205–225

    Article  CAS  PubMed  Google Scholar 

  44. Mcauley EM, Bradke TA, Plopper GE (2011) Phenylboronic acid is a more potent inhibitor than boric acid of key signaling networks involved in cancer cell migration. Cell Adhes Migr 5(5):382–386

    Article  Google Scholar 

  45. Bradke TM, Hall C, Carper SW, Plopper GE (2008) Phenylboronic acid selectively inhibits human prostate and breast cancer cell migration and decreases viability. Cell Adhes Migr 2(3):153–160

    Article  Google Scholar 

  46. Elegbede AF (2007) Boric acid inhibits cell growth and induces apoptosis in breast cancer cells. Master’s thesis, University of Las Vegas

  47. Barranco WT, Eckhert CD (2006) Cellular changes in boric acid-treated DU-145 prostate cancer cells. Br J Cancer 94(6):884–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Carper SW, Hall C, Meacham SL (2007) Boric acid and phenyl boric acid induce apoptosis in prostate cancer cell lines. Cell Biol Toxicol 24:S30

    Google Scholar 

  49. Korkmaz M, Avcı CB, Gunduz C, Aygunes D, Tepedelen BE (2014) Disodium pentaborate decahydrate (DPD) induced apoptosis by decreasing hTERT enzyme activity and disrupting F-actin organization of prostate cancer cells. Tumor Biol 35:1531–1538

    Article  CAS  Google Scholar 

  50. Wang S, Liu Q, Zhang Y, Liu K, Yu P, Liu K, Luan J, Duan H, Lu Z, Wang F, Wu E, Yagasaki K, Zhang G (2009) Suppression of growth, migration and invasion of highly-metastatic human breast cancer cells by berbamine and its molecular mechanisms of action. Mol Cancer 8:81

    Article  PubMed  PubMed Central  Google Scholar 

  51. Liu YC, Ma WH, Ge YL, Xue ML, Zhang Z, Zhang JY, Hou L, Mu RH (2016) RNAi-mediated gene silencing of vascular endothelial growth factor C suppresses growth and induces apoptosis in mouse breast cancer in vitro and in vivo. Oncol Lett 12(5):3896–3904

    PubMed  PubMed Central  Google Scholar 

  52. Xu H, Mi R, Fan R, Yin Q, Wei X (2016) Effects of thalidomide combined with interferon on inhibiting Kasumi-1 cell proliferation. Adv Clin Exp Med 25(3):403–408

    Article  PubMed  Google Scholar 

  53. Yokota H, Konishi S (1990) Effect of the formation of a sugar-borate complex on the growth inhibition of pollen tubes of Camellia sinensis and cultured cells of Nicotiana tabacum by toxic levels of borate. Soil Science and Plant Nutrition 36(2):275–281

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported with grants (TUBITAK 113S700) from the Turkish Scientific and Technological Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Korkmaz.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tepedelen, B.E., Korkmaz, M., Tatlisumak, E. et al. A Study on the Anticarcinogenic Effects of Calcium Fructoborate. Biol Trace Elem Res 178, 210–217 (2017). https://doi.org/10.1007/s12011-016-0918-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0918-6

Keywords

Navigation