Skip to main content
Log in

Interplay Between Cytosolic Free Zn2+ and Mitochondrion Morphological Changes in Rat Ventricular Cardiomyocytes

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The Zn2+ in cardiomyocytes is buffered by structures near T-tubulus and/or sarcoplasmic/endoplasmic reticulum (S(E)R) while playing roles as either an antioxidant or a toxic agent, depending on the concentration. Therefore, we aimed first to examine a direct effect of ZnPO4 (extracellular exposure) or Zn2+ pyrithione (ZnPT) (intracellular exposure) application on the structure of the mitochondrion in ventricular cardiomyocytes by using histological investigations. The light microscopy data demonstrated that Zn2+ exposure induced marked increases on cellular surface area, an indication of hypertrophy, in a concentration-dependent manner. Furthermore, a whole-cell patch-clamp measurement of cell capacitance also supported the hypertrophy in the cells. We observed marked increases in mitochondrial matrix/cristae area and matrix volume together with increased lysosome numbers in ZnPO4- or ZnPT-incubated cells by using transmission electron microscopy, again in a concentration-dependent manner. Furthermore, we observed notable clustering and vacuolated mitochondrion, markedly disrupted and damaged myofibrils, and electron-dense small granules in Zn2+-exposed cells together with some implications of fission-fusion defects in the mitochondria. Moreover, we observed marked depolarization in mitochondrial membrane potential during 1-μM ZnPT minute applications by using confocal microscopy. We also showed that 1-μM ZnPT incubation induced significant increases in the phosphorylation levels of GSK3β (Ser21 and Ser9), Akt (Ser473), and NFκB (Ser276 and Thr254) together with increased expression levels in ER stress proteins such as GRP78 and calregulin. Furthermore, a new key player at ER-mitochondria sites, promyelocytic leukemia protein (PML) level, was markedly increased in ZnPT-incubated cells. As a summary, our present data suggest that increased cytosolic free Zn2+ can induce marked alterations in mitochondrion morphology as well as depolarization in mitochondrion membrane potential and changes in some cytosolic signaling proteins as well as a defect in ER-mitochondria cross talk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Prasad AS (2013) Discovery of human zinc deficiency: its impact on human health and disease. Adv Nutr 4(2):176–190. doi:10.3945/an.112.003210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tuncay E, Bilginoglu A, Sozmen NN, Zeydanli EN, Ugur M, Vassort G, Turan B (2011) Intracellular free zinc during cardiac excitation-contraction cycle: calcium and redox dependencies. Cardiovasc Res 89(3):634–642. doi:10.1093/cvr/cvq352

    Article  CAS  PubMed  Google Scholar 

  3. Kamalov G, Deshmukh PA, Baburyan NY, Gandhi MS, Johnson PL, Ahokas RA, Bhattacharya SK, Sun Y, Gerling IC, Weber KT (2009) Coupled calcium and zinc dyshomeostasis and oxidative stress in cardiac myocytes and mitochondria of rats with chronic aldosteronism. J Cardiovasc Pharmacol 53(5):414–423. doi:10.1097/FJC.0b013e3181a15e77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73(1):79–118

    CAS  PubMed  Google Scholar 

  5. Turan B, Fliss H, Desilets M (1997) Oxidants increase intracellular free Zn2+ concentration in rabbit ventricular myocytes. Am J Physiol 272(5 Pt 2):H2095–H2106

    CAS  PubMed  Google Scholar 

  6. Bodiga VL, Thokala S, Vemuri PK, Bodiga S (2015) Zinc pyrithione inhibits caspase-3 activity, promotes ErbB1-ErbB2 heterodimerization and suppresses ErbB2 downregulation in cardiomyocytes subjected to ischemia/reperfusion. J Inorg Biochem 153:49–59. doi:10.1016/j.jinorgbio.2015.09.010

    Article  CAS  PubMed  Google Scholar 

  7. Zhao Y, Wu J, Zhu H, Song P, Zou MH (2013) Peroxynitrite-dependent zinc release and inactivation of guanosine 5′-triphosphate cyclohydrolase 1 instigate its ubiquitination in diabetes. Diabetes 62(12):4247–4256. doi:10.2337/db13-0751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tuncay E, Okatan EN, Vassort G, Turan B (2013) Beta-blocker timolol prevents arrhythmogenic Ca(2)(+) release and normalizes Ca(2)(+) and Zn(2)(+) dyshomeostasis in hyperglycemic rat heart. PLoS One 8(7):e71014. doi:10.1371/journal.pone.0071014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tuncay E, Okatan EN, Toy A, Turan B (2014) Enhancement of cellular antioxidant-defence preserves diastolic dysfunction via regulation of both diastolic Zn2+ and Ca2+ and prevention of RyR2-leak in hyperglycemic cardiomyocytes. Oxidative Med Cell Longev 2014:290381. doi:10.1155/2014/290381

    Article  Google Scholar 

  10. Tuncay E, Turan B (2016) Intracellular Zn(2+) increase in cardiomyocytes induces both electrical and mechanical dysfunction in heart via endogenous generation of reactive nitrogen species. Biol Trace Elem Res 169(2):294–302. doi:10.1007/s12011-015-0423-3

    Article  CAS  PubMed  Google Scholar 

  11. Chanoit G, Lee S, Xi J, Zhu M, McIntosh RA, Mueller RA, Norfleet EA, Xu Z (2008) Exogenous zinc protects cardiac cells from reperfusion injury by targeting mitochondrial permeability transition pore through inactivation of glycogen synthase kinase-3beta. Am J Physiol Heart Circ Physiol 295(3):H1227–h1233. doi:10.1152/ajpheart.00610.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brown AM, Kristal BS, Effron MS, Shestopalov AI, Ullucci PA, Sheu KF, Blass JP, Cooper AJ (2000) Zn2+ inhibits alpha-ketoglutarate-stimulated mitochondrial respiration and the isolated alpha-ketoglutarate dehydrogenase complex. J Biol Chem 275(18):13441–13447

    Article  CAS  PubMed  Google Scholar 

  13. Cribbs JT, Strack S (2007) Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep 8(10):939–944. doi:10.1038/sj.embor.7401062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Baltas LG, Karczewski P, Krause EG (1997) Effects of zinc on phospholamban phosphorylation. Biochem Biophys Res Commun 232(2):394–397. doi:10.1006/bbrc.1997.6300

    Article  CAS  PubMed  Google Scholar 

  15. Liesa M, Palacin M, Zorzano A (2009) Mitochondrial dynamics in mammalian health and disease. Physiol Rev 89(3):799–845. doi:10.1152/physrev.00030.2008

    Article  CAS  PubMed  Google Scholar 

  16. Xu Z, Zhou J (2013) Zinc and myocardial ischemia/reperfusion injury. Biometals 26(6):863–878. doi:10.1007/s10534-013-9671-x

    Article  CAS  PubMed  Google Scholar 

  17. Han XJ, Lu YF, Li SA, Kaitsuka T, Sato Y, Tomizawa K, Nairn AC, Takei K, Matsui H, Matsushita M (2008) CaM kinase I alpha-induced phosphorylation of Drp1 regulates mitochondrial morphology. J Cell Biol 182(3):573–585. doi:10.1083/jcb.200802164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Manev H, Kharlamov E, Uz T, Mason RP, Cagnoli CM (1997) Characterization of zinc-induced neuronal death in primary cultures of rat cerebellar granule cells. Exp Neurol 146(1):171–178. doi:10.1006/exnr.1997.6510

    Article  CAS  PubMed  Google Scholar 

  19. Yaras N, Ugur M, Ozdemir S, Gurdal H, Purali N, Lacampagne A, Vassort G, Turan B (2005) Effects of diabetes on ryanodine receptor Ca release channel (RyR2) and Ca2+ homeostasis in rat heart. Diabetes 54(11):3082–3088

    Article  CAS  PubMed  Google Scholar 

  20. An WL, Bjorkdahl C, Liu R, Cowburn RF, Winblad B, Pei JJ (2005) Mechanism of zinc-induced phosphorylation of p70 S6 kinase and glycogen synthase kinase 3beta in SH-SY5Y neuroblastoma cells. J Neurochem 92(5):1104–1115. doi:10.1111/j.1471-4159.2004.02948.x

    Article  CAS  PubMed  Google Scholar 

  21. Ilouz R, Kaidanovich O, Gurwitz D, Eldar-Finkelman H (2002) Inhibition of glycogen synthase kinase-3beta by bivalent zinc ions: insight into the insulin-mimetic action of zinc. Biochem Biophys Res Commun 295(1):102–106

    Article  CAS  PubMed  Google Scholar 

  22. Huber KL, Hardy JA (2012) Mechanism of zinc-mediated inhibition of caspase-9. Protein Sci 21(7):1056–1065. doi:10.1002/pro.2090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cicek FA, Toy A, Tuncay E, Can B, Turan B (2014) Beta-blocker timolol alleviates hyperglycemia-induced cardiac damage via inhibition of endoplasmic reticulum stress. J Bioenerg Biomembr 46(5):377–387. doi:10.1007/s10863-014-9568-6

    Article  CAS  PubMed  Google Scholar 

  24. Ayaz M, Celik HA, Aydin HH, Turan B (2006) Sodium selenite protects against diabetes-induced alterations in the antioxidant defense system of the liver. Diabetes Metab Res Rev 22(4):295–299. doi:10.1002/dmrr.601

    Article  CAS  PubMed  Google Scholar 

  25. Pinton P, Giorgi C, Pandolfi PP (2011) The role of PML in the control of apoptotic cell fate: a new key player at ER-mitochondria sites. Cell Death Differ 18(9):1450–1456. doi:10.1038/cdd.2011.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Oteiza PI (2012) Zinc and the modulation of redox homeostasis. Free Radic Biol Med 53(9):1748–1759. doi:10.1016/j.freeradbiomed.2012.08.568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Taylor KM, Kille P, Hogstrand C (2012) Protein kinase CK2 opens the gate for zinc signaling. Cell Cycle 11(10):1863–1864. doi:10.4161/cc.20414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jang Y, Wang H, Xi J, Mueller RA, Norfleet EA, Xu Z (2007) NO mobilizes intracellular Zn2+ via cGMP/PKG signaling pathway and prevents mitochondrial oxidant damage in cardiomyocytes. Cardiovasc Res 75(2):426–433. doi:10.1016/j.cardiores.2007.05.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chabosseau P, Tuncay E, Meur G, Bellomo EA, Hessels A, Hughes S, Johnson PR, Bugliani M, Marchetti P, Turan B, Lyon AR, Merkx M, Rutter GA (2014) Mitochondrial and ER-targeted eCALWY probes reveal high levels of free Zn2+. ACS Chem Biol 9(9):2111–2120. doi:10.1021/cb5004064

    Article  CAS  PubMed  Google Scholar 

  30. Colvin RA, Holmes WR, Fontaine CP, Maret W (2010) Cytosolic zinc buffering and muffling: their role in intracellular zinc homeostasis. Metallomics Integr Biometal Sci 2(5):306–317. doi:10.1039/b926662c

    Article  CAS  Google Scholar 

  31. Russell JW, Golovoy D, Vincent AM, Mahendru P, Olzmann JA, Mentzer A, Feldman EL (2002) High glucose-induced oxidative stress and mitochondrial dysfunction in neurons. FASEB J 16(13):1738–1748. doi:10.1096/fj.01-1027com

    Article  CAS  PubMed  Google Scholar 

  32. Traynelis SF, Burgess MF, Zheng F, Lyuboslavsky P, Powers JL (1998) Control of voltage-independent zinc inhibition of NMDA receptors by the NR1 subunit. J Neurosci 18(16):6163–6175

    CAS  PubMed  Google Scholar 

  33. Zhang S, Kehl SJ, Fedida D (2001) Modulation of Kv1.5 potassium channel gating by extracellular zinc. Biophys J 81(1):125–136. doi:10.1016/s0006-3495(01)75686-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Turan B (2003) Zinc-induced changes in ionic currents of cardiomyocytes. Biol Trace Elem Res 94(1):49–60. doi:10.1385/bter:94:1:49

    Article  CAS  PubMed  Google Scholar 

  35. Alvarez-Collazo J, Diaz-Garcia CM, Lopez-Medina AI, Vassort G, Alvarez JL (2012) Zinc modulation of basal and beta-adrenergically stimulated L-type Ca2+ current in rat ventricular cardiomyocytes: consequences in cardiac diseases. Pflugers Arch 464(5):459–470. doi:10.1007/s00424-012-1162-3

    Article  CAS  PubMed  Google Scholar 

  36. Gilly WF, Armstrong CM (1982) Slowing of sodium channel opening kinetics in squid axon by extracellular zinc. J Gen Physiol 79(6):935–964

    Article  CAS  PubMed  Google Scholar 

  37. Pawert M, Triebskorn R, Graff S, Berkus M, Schulz J, Kohler HR (1996) Cellular alterations in collembolan midgut cells as a marker of heavy metal exposure: ultrastructure and intracellular metal distribution. Sci Total Environ 181(3):187–200

    Article  CAS  PubMed  Google Scholar 

  38. Tandler B, Fujioka H, Hoppel CL, Haldar SM, Jain MK (2015) Megamitochondria in cardiomyocytes of a knockout (Klf15-/-) mouse. Ultrastruct Pathol 39(5):336–339. doi:10.3109/01913123.2015.1042610

    Article  PubMed  PubMed Central  Google Scholar 

  39. Redpath CJ, Bou Khalil M, Drozdzal G, Radisic M, McBride HM (2013) Mitochondrial hyperfusion during oxidative stress is coupled to a dysregulation in calcium handling within a C2C12 cell model. PLoS One 8(7):e69165. doi:10.1371/journal.pone.0069165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Williamson CL, Dabkowski ER, Baseler WA, Croston TL, Alway SE, Hollander JM (2010) Enhanced apoptotic propensity in diabetic cardiac mitochondria: influence of subcellular spatial location. Am J Physiol Heart Circ Physiol 298(2):H633–H642. doi:10.1152/ajpheart.00668.2009

    Article  CAS  PubMed  Google Scholar 

  41. Hom J, Yu T, Yoon Y, Porter G, Sheu SS (2010) Regulation of mitochondrial fission by intracellular Ca2+ in rat ventricular myocytes. Biochim Biophys Acta 1797(6-7):913–921. doi:10.1016/j.bbabio.2010.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Martinou I, Desagher S, Eskes R, Antonsson B, Andre E, Fakan S, Martinou JC (1999) The release of cytochrome c from mitochondria during apoptosis of NGF-deprived sympathetic neurons is a reversible event. J Cell Biol 144(5):883–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kuznetsova SS, Azarkina NV, Vygodina TV, Siletsky SA, Konstantinov AA (2005) Zinc ions as cytochrome C oxidase inhibitors: two sites of action. Biochem Biokhim 70(2):128–136

    Article  CAS  Google Scholar 

  44. Miki T, Miura T, Hotta H, Tanno M, Yano T, Sato T, Terashima Y, Takada A, Ishikawa S, Shimamoto K (2009) Endoplasmic reticulum stress in diabetic hearts abolishes erythropoietin-induced myocardial protection by impairment of phospho-glycogen synthase kinase-3beta-mediated suppression of mitochondrial permeability transition. Diabetes 58(12):2863–2872. doi:10.2337/db09-0158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rao R, Hao CM, Redha R, Wasserman DH, McGuinness OP, Breyer MD (2007) Glycogen synthase kinase 3 inhibition improves insulin-stimulated glucose metabolism but not hypertension in high-fat-fed C57BL/6J mice. Diabetologia 50(2):452–460. doi:10.1007/s00125-006-0552-5

    Article  CAS  PubMed  Google Scholar 

  46. Xi J, Tian W, Zhang L, Jin Y, Xu Z (2010) Morphine prevents the mitochondrial permeability transition pore opening through NO/cGMP/PKG/Zn2+/GSK-3beta signal pathway in cardiomyocytes. Am J Physiol Heart Circ Physiol 298(2):H601–H607. doi:10.1152/ajpheart.00453.2009

    Article  CAS  PubMed  Google Scholar 

  47. Ni M, Li F, Wang B, Xu K, Zhang H, Hu J, Tian J, Shen W, Li B (2014) Effect of TiO nanoparticles on the reproduction of silkworm. Biol Trace Elem Res. doi:10.1007/s12011-014-0195-1

    Google Scholar 

  48. Song G, Ouyang G, Bao S (2005) The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 9(1):59–71

    Article  CAS  PubMed  Google Scholar 

  49. Garofalo RS, Orena SJ, Rafidi K, Torchia AJ, Stock JL, Hildebrandt AL, Coskran T, Black SC, Brees DJ, Wicks JR, McNeish JD, Coleman KG (2003) Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKB beta. J Clin Invest 112(2):197–208. doi:10.1172/JCI16885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mackenzie GG, Zago MP, Keen CL, Oteiza PI (2002) Low intracellular zinc impairs the translocation of activated NF-kappa B to the nuclei in human neuroblastoma IMR-32 cells. J Biol Chem 277(37):34610–34617. doi:10.1074/jbc.M203616200

    Article  CAS  PubMed  Google Scholar 

  51. Zhuo S, Dixon JE (1997) Effects of sulfhydryl regents on the activity of lambda Ser/Thr phosphoprotein phosphatase and inhibition of the enzyme by zinc ion. Protein Eng 10(12):1445–1452

    Article  CAS  PubMed  Google Scholar 

  52. Xiong S, Wang P, Ma L, Gao P, Gong L, Li L, Li Q, Sun F, Zhou X, He H, Chen J, Yan Z, Liu D, Zhu Z (2016) Ameliorating endothelial mitochondrial dysfunction restores coronary function via transient receptor potential vanilloid 1-mediated protein kinase A/uncoupling protein 2 pathway. Hypertension 67(2):451–460. doi:10.1161/hypertensionaha.115.06223

    CAS  PubMed  Google Scholar 

  53. Malaiyandi LM, Honick AS, Rintoul GL, Wang QJ, Reynolds IJ (2005) Zn2+ inhibits mitochondrial movement in neurons by phosphatidylinositol 3-kinase activation. J Neurosci 25(41):9507–9514. doi:10.1523/jneurosci.0868-05.2005

    Article  CAS  PubMed  Google Scholar 

  54. Dineley KE, Richards LL, Votyakova TV, Reynolds IJ (2005) Zinc causes loss of membrane potential and elevates reactive oxygen species in rat brain mitochondria. Mitochondrion 5(1):55–65

    Article  CAS  PubMed  Google Scholar 

  55. Adolfsson PI, Bloth B, Hagg S, Svensson SP (2015) Zinc induces a bell-shaped proliferative dose-response effect in cultured smooth muscle cells from benign prostatic hyperplasia. Urology 85(3):704.e715–709. doi:10.1016/j.urology.2014.11.026

    Article  Google Scholar 

  56. Feng P, Li T, Guan Z, Franklin RB, Costello LC (2008) The involvement of Bax in zinc-induced mitochondrial apoptogenesis in malignant prostate cells. Mol Cancer 7:25. doi:10.1186/1476-4598-7-25

    Article  PubMed  PubMed Central  Google Scholar 

  57. Fernandez-Sanz C, Ruiz-Meana M, Miro-Casas E, Nunez E, Castellano J, Loureiro M, Barba I, Poncelas M, Rodriguez-Sinovas A, Vazquez J, Garcia-Dorado D (2014) Defective sarcoplasmic reticulum-mitochondria calcium exchange in aged mouse myocardium. Cell Death Dis 5:e1573. doi:10.1038/cddis.2014.526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hausenloy DJ, Scorrano L (2007) Targeting cell death. Clin Pharmacol Ther 82(4):370–373. doi:10.1038/sj.clpt.6100352

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by a grant from TUBITAK (SBAG-113S466) and COST Action TD1304 to Belma Turan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belma Turan.

Ethics declarations

Conflict of Interest

No potential conflicts of interest relevant to this article were reported.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Billur, D., Tuncay, E., Okatan, E.N. et al. Interplay Between Cytosolic Free Zn2+ and Mitochondrion Morphological Changes in Rat Ventricular Cardiomyocytes. Biol Trace Elem Res 174, 177–188 (2016). https://doi.org/10.1007/s12011-016-0704-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0704-5

Keywords

Navigation