Skip to main content

Advertisement

Log in

Zinc and myocardial ischemia/reperfusion injury

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

As an important trace element, zinc is required for the normal cellular structure and function, and impairment of zinc homeostasis is associated with a variety of health problems including cardiovascular disease. Zinc homeostasis is regulated through zinc transporters, zinc binding molecules, and zinc sensors. Zinc also plays a critical role in cellular signaling. Studies have documented that zinc homeostasis is impaired by ischemia/reperfusion in the heart and zinc dyshomeostasis may play a role in the pathogenesis of myocardial ischemia/reperfusion injury. Both exogenous and endogenously released zinc may play an important role in cardioprotection against ischemia/reperfusion injury. The goal of this review is to summarize the current understanding of the roles of zinc homeostasis and zinc signaling in myocardial ischemia/reperfusion injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An W-L, Bjorkdahl C, Liu R, Cowburn RF, Winblad B, Pei J-J (2005) Mechanism of zinc-induced phosphorylation of p70 S6 kinase and glycogen synthase kinase 3β in SH-SY5Y neuroblastoma cells. J Neurochem 92:1104–1115

    CAS  PubMed  Google Scholar 

  • Andrews GK (2001) Cellular zinc sensors: MTF-1 regulation of gene expression. Biometals 14:223–237

    CAS  PubMed  Google Scholar 

  • Aras MA, Aizenman E (2011) Redox regulation of intracellular zinc: molecular signaling in the life and death of neurons. Antioxid Redox Signal 15:2249–2263

    CAS  PubMed  Google Scholar 

  • Aschner M (1996) The functional significance of brain metallothioneins. FASEB J 10:1129–1136

    CAS  PubMed  Google Scholar 

  • Aydemir TB, Sitren HS, Cousins RJ (2012) The zinc transporter Zip14 influences c-met phosphorylation and hepatocyte proliferation during liver regeneration in mice. Gastroenterology 142(1536–1546):e1535

    Google Scholar 

  • Bao S, Knoell DL (2006) Zinc modulates airway epithelium susceptibility to death receptor-mediated apoptosis. Am J Physiol 290:433–441

    Google Scholar 

  • Barthel A, Klotz LO (2005) Phosphoinositide 3-kinase signaling in the cellular response to oxidative stress. Biol Chem 386:207–216

    CAS  PubMed  Google Scholar 

  • Barthel A, Ostrakhovitch EA, Walter PL, Kampkötter A, Klotz L-O (2007) Stimulation of phosphoinositide 3-kinase/Akt signaling by copper and zinc ions: mechanisms and consequences. Arch Biochem Biophys 463:175–182

    CAS  PubMed  Google Scholar 

  • Beattie JH, Kwun IS (2004) Is zinc deficiency a risk factor for atherosclerosis? Br J Nutr 91:177–181

    CAS  PubMed  Google Scholar 

  • Begum NA, Kobayashi M, Moriwaki Y, Matsumoto M, Toyoshima K, Seya T (2002) Mycobacterium bovis BCG cell wall and lipopolysaccharide induce a novel gene, BIGM103, encoding a 7-TM protein: identification of a new protein family Having Zn-transporter and Zn-metalloprotease signatures. Genomics 80:630–645

    CAS  PubMed  Google Scholar 

  • Beharier O, Dror S, Levy S, Kahn J, Mor M, Etzion S, Gitler D, Katz A, Muslin A, Moran A, Etzion Y (2012) ZnT-1 protects HL-1 cells from simulated ischemia–reperfusion through activation of Ras–ERK signaling. J Mol Med 90:127–138

    CAS  PubMed  Google Scholar 

  • Berg JM, Shi Y (1996) The galvanization of biology: a growing appreciation for the roles of zinc. Science 271:1081–1085

    CAS  PubMed  Google Scholar 

  • Besecker B, Bao S, Bohacova B, Papp A, Sadee W, Knoell DL (2008) The human zinc transporter SLC39A8 (Zip8) is critical in zinc-mediated cytoprotection in lung epithelia. Am J Physiol 294:L1127–L1136

    CAS  Google Scholar 

  • Besser L, Chorin E, Sekler I, Silverman WF, Atkin S, Russell JT, Hershfinkel M (2009) Synaptically released zinc triggers metabotropic signaling via a zinc-sensing receptor in the hippocampus. J Neurosci 29:2890–2901

    CAS  PubMed  Google Scholar 

  • Beyersmann D, Haase H (2001) Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals 14:331–341

    CAS  PubMed  Google Scholar 

  • Bossy-Wetzel E, Talantova MV, Lee WD, Scholzke MN, Harrop A, Mathews E, Gotz T, Han J, Ellisman MH, Perkins GA, Lipton SA (2004) Crosstalk between nitric oxide and zinc pathways to neuronal cell death involving mitochondrial dysfunction and p38-activated K+channels. Neuron 41:351–365

    CAS  PubMed  Google Scholar 

  • Brautigan DL, Bornstein P, Gallis B (1981) Phosphotyrosyl-protein phosphatase. Specific inhibition by Zn. J Biol Chem 256:6519–6522

    CAS  PubMed  Google Scholar 

  • Cai L, Wang Y, Zhou G, Chen T, Song Y, Li X, Kang YJ (2006) Attenuation by metallothionein of early cardiac cell death via suppression of mitochondrial oxidative stress results in a prevention of diabetic cardiomyopathy. J Am Coll Cardiol 48:1688–1697

    CAS  PubMed  Google Scholar 

  • Cao J, Bobo JA, Liuzzi JP, Cousins RJ (2001) Effects of intracellular zinc depletion on metallothionein and ZIP2 transporter expression and apoptosis. J Leukoc Biol 70:559–566

    CAS  PubMed  Google Scholar 

  • Chanoit G, Lee S, Xi J, Zhu M, McIntosh RA, Mueller RA, Norfleet EA, Xu Z (2008) Exogenous zinc protects cardiac cells from reperfusion injury by targeting mitochondrial permeability transition pore through inactivation of glycogen synthase kinase-3β. Am J Physiol 295:H1227–H1233

    CAS  Google Scholar 

  • Chasapis C, Loutsidou A, Spiliopoulou C, Stefanidou M (2012) Zinc and human health: an update. Arch Toxicol 86:521–534

    CAS  PubMed  Google Scholar 

  • Cohen P, Frame S (2001) The renaissance of GSK3. Nat Rev Mol Cell Biol 2:769–776

    CAS  PubMed  Google Scholar 

  • Cousins RJ, Blanchard RK, Popp MP, Liu L, Cao J, Moore JB, Green CL (2003) A global view of the selectivity of zinc deprivation and excess on genes expressed in human THP-1 mononuclear cells. Proc Natl Acad Sci USA 100:6952–6957

    CAS  PubMed  Google Scholar 

  • Cousins RJ, Liuzzi JP, Lichten LA (2006) Mammalian zinc transport, trafficking, and signals. J Biol Chem 281:24085–24089

    CAS  PubMed  Google Scholar 

  • Coyle P, Philcox JC, Carey LC, Rofe AM (2002) Metallothionein: the multipurpose protein. Cell Mol Life Sci 59:627–647

    CAS  PubMed  Google Scholar 

  • Csermely P, Szamel M, Resch K, Somogyi J (1988) Zinc can increase the activity of protein kinase C and contributes to its binding to plasma membranes in T lymphocytes. J Biol Chem 263:6487–6490

    CAS  PubMed  Google Scholar 

  • Davis SR, McMahon RJ, Cousins RJ (1998) Metallothionein knockout and transgenic mice exhibit altered intestinal processing of zinc with uniform zinc-dependent zinc transporter-1 expression. J Nutr 128:825–831

    CAS  PubMed  Google Scholar 

  • Donnelly TE (1978) Effects of zincchloride on the hydrolysis of cyclic GMP and cyclic AMP by the activator-dependent cyclic nucleotide phosphodiesterase from bovine heart. Biochim Biophys Acta 522:151–160

    CAS  PubMed  Google Scholar 

  • Fischer EH (1999) Cell signaling by protein tyrosine phosphorylation. Adv Enzyme Regul 39:359–369

    CAS  PubMed  Google Scholar 

  • Forbes IJ, Zalewski PD, Giannakis C, Betts WH (1990a) Zinc induces specific association of PKC with membrane cytoskeleton. Biochem Int 22:741–748

    CAS  PubMed  Google Scholar 

  • Forbes IJ, Zalewski PD, Giannakis C, Petkoff HS, Cowled PA (1990b) Interaction between protein kinase C and regulatory ligand is enhanced by a chelatable pool of cellular zinc. Biochim Biophys Acta 1053:113–117

    CAS  PubMed  Google Scholar 

  • Foster M, Samman S (2010) Zinc and redox signaling: perturbations associated with cardiovascular disease and diabetes mellitus. Antioxid Redox Signal 13:1549–1573

    CAS  PubMed  Google Scholar 

  • Foster M, Samman S (2012) Zinc and regulation of inflammatory cytokines: implications for cardiometabolic disease. Nutrients 4:676–694

    CAS  PubMed  Google Scholar 

  • Frame S, Cohen P (2001) GSK3 takes centre stage more than 20 years after its discovery. Biochem J 359:1–16

    CAS  PubMed  Google Scholar 

  • Franklin R, Feng P, Milon B, Desouki M, Singh K, Kajdacsy-Balla A, Bagasra O, Costello L (2005) hZIP1 zinc uptake transporter down regulation and zinc depletion in prostate cancer. Mol Cancer 4:32

    PubMed  Google Scholar 

  • Fukada T, Yamasaki S, Nishida K, Murakami M, Hirano T (2011) Zinc homeostasis and signaling in health and diseases. J Biol Inorg Chem 16:1123–1134

    CAS  PubMed  Google Scholar 

  • Gerszten RE, Lim YC, Ding HT, Snapp K, Kansas G, Dichek DA, Cabanas C, Sanchez-Madrid F, Gimbrone MA Jr, Rosenzweig A, Luscinskas FW (1998) Adhesion of monocytes to vascular cell adhesion molecule-1-transduced human endothelial cells: implications for atherogenesis. Circ Res 82:871–878

    CAS  PubMed  Google Scholar 

  • Guffanti AA, Wei Y, Rood SV, Krulwich TA (2002) An antiport mechanism for a member of the cation diffusion facilitator family: divalent cations efflux in exchange for K+ and H+. Mol Microbiol 45:145–153

    CAS  PubMed  Google Scholar 

  • Guo R, Ma H, Gao F, Zhong L, Ren J (2009) Metallothionein alleviates oxidative stress-induced endoplasmic reticulum stress and myocardial dysfunction. J Mol Cell Cardiol 47:228–237

    CAS  PubMed  Google Scholar 

  • Haase H, Maret W (2003) Intracellular zinc fluctuations modulate protein tyrosine phosphatase activity in insulin/insulin-like growth factor-1 signaling. Exp Cell Res 291:289–298

    CAS  PubMed  Google Scholar 

  • Haase H, Maret W (2005) Fluctuations of cellular, available zinc modulate insulin signaling via inhibition of protein tyrosine phosphatases. J Trace Elem Med Biol 19:37–42

    CAS  PubMed  Google Scholar 

  • Hausenloy DJ, Yellon DM (2004) New directions for protecting the heart against ischaemia–reperfusion injury: targeting the reperfusion injury salvage kinase (RISK)-pathway. Cardiovasc Res 61:448–460

    CAS  PubMed  Google Scholar 

  • Hausenloy DJ, Tsang A, Yellon DM (2005) The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc Med 15:69–75

    CAS  PubMed  Google Scholar 

  • Heuchel R, Radtke F, Georgiev O, Stark G, Aguet M, Schaffner W (1994) The transcription factor MTF-1 is essential for basal and heavy metal-induced metallothionein gene expression. EMBO J 13:2870–2875

    CAS  PubMed  Google Scholar 

  • Hojyo S, Fukada T, Shimoda S, Ohashi W, Bin B-H, Koseki H, Hirano T (2011) The zinc transporter SLC39A14/ZIP14 controls G-protein coupled receptor-mediated signaling required for systemic growth. PLoS ONE 6:e18059

    CAS  PubMed  Google Scholar 

  • Holst B, Egerod KL, Schild E, Vickers SP, Cheetham S, Gerlach L-O, Storjohann L, Stidsen CE, Jones R, Beck-Sickinger AG, Schwartz TW (2007) GPR39 signaling is stimulated by zinc ions but not by obestatin. Endocrinology 148:13–20

    CAS  PubMed  Google Scholar 

  • Holst B, Egerod KL, Jin C, Petersen PS, Østergaard MV, Hald J, Sprinkel AME, Størling J, Mandrup-Poulsen T, Holst JJ, Thams P, Orskov C, Wierup N, Sundler F, Madsen OD, Schwartz TW (2009) G protein-coupled receptor 39 deficiency is associated with pancreatic islet dysfunction. Endocrinology 150:2577–2585

    CAS  PubMed  Google Scholar 

  • Huang L, Kirschke CP (2007) A di-leucine sorting signal in ZIP1 (SLC39A1) mediates endocytosis of the protein. FEBS J 274:3986–3997

    PubMed  Google Scholar 

  • Hubbard SR, Bishop WR, Kirschmeier P, George SJ, Cramer SP, Hendrickson WA (1991) Identification and characterization of zinc binding sites in protein kinase C. Science 254:1776–1779

    CAS  PubMed  Google Scholar 

  • Ilouz R, Kaidanovich O, Gurwitz D, Eldar-Finkelman H (2002) Inhibition of glycogen synthase kinase-3β by bivalent zinc ions: insight into the insulin-mimetic action of zinc. Biochem Biophys Res Commun 295:102–106

    CAS  PubMed  Google Scholar 

  • Jacob C, Maret W, Vallee BL (1998) Control of zinc transfer between thionein, metallothionein, and zinc proteins. Proc Nat Acad Sci USA 95:3489–3494

    CAS  PubMed  Google Scholar 

  • Jang Y, Wang H, Xi J, Mueller RA, Norfleet EA, Xu Z (2007) NO mobilizes intracellular Zn2+ via cGMP/PKG signaling pathway and prevents mitochondrial oxidant damage in cardiomyocytes. Cardiovasc Res 75:426–433

    CAS  PubMed  Google Scholar 

  • Jope RS, Johnson GVW (2004) The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 29:95–102

    CAS  PubMed  Google Scholar 

  • Juhaszova M, Zorov DB, Yaniv Y, Nuss HB, Wang S, Sollott SJ (2009) Role of glycogen synthase kinase-3β in cardioprotection. Circ Res 104:1240–1252

    CAS  PubMed  Google Scholar 

  • Kambe T, Geiser J, Lahner B, Salt DE, Andrews GK (2008) Slc39a1 to 3 (subfamily II) Zip genes in mice have unique cell-specific functions during adaptation to zinc deficiency. Am J Physiol 294:R1474–R1481

    CAS  Google Scholar 

  • Kang YJ (1999) The antioxidant function of metallothionein in the heart. Proc Soc Exp Biol Med 222:263–273

    CAS  PubMed  Google Scholar 

  • Kang YJ, Li G, Saari JT (1999) Metallothionein inhibits ischemia–reperfusion injury in mouse heart. Am J Physiol 276:H993–H997

    CAS  PubMed  Google Scholar 

  • Kang YJ, Li Y, Sun X, Sun X (2003) Antiapoptotic effect and inhibition of ischemia/reperfusion-induced myocardial injury in metallothionein-overexpressing transgenic mice. Am J Pathol 163:1579–1586

    CAS  PubMed  Google Scholar 

  • Karagulova G, Yue Y, Moreyra A, Boutjdir M, Korichneva I (2007) Protective role of intracellular zinc in myocardial ischemia/reperfusion is associated with preservation of protein kinase C isoforms. J Pharmacol Exp Ther 321:517–525

    CAS  PubMed  Google Scholar 

  • Kasi V, Bodiga S, Kommuguri UN, Sankuru S, Bodiga VL (2011) Zinc pyrithione salvages reperfusion injury by inhibiting NADPH oxidase activation in cardiomyocytes. Biochem Biophys Res Commun 410:270–275

    CAS  PubMed  Google Scholar 

  • Kelleher SL, Lonnerdal B (2002) Zinc transporters in the rat mammary gland respond to marginal zinc and vitamin A intakes during lactation. J Nutr 132:3280–3285

    CAS  PubMed  Google Scholar 

  • Kim AH, Sheline CT, Tian M, Higashi T, McMahon RJ, Cousins RJ, Choi DW (2000a) L-type Ca2+ channel-mediated Zn2+ toxicity and modulation by ZnT-1 in PC12 cells. Brain Res 886:99–107

    CAS  PubMed  Google Scholar 

  • Kim S, Jung Y, Kim D, Koh H, Chung J (2000b) Extracellular zinc activates p70s6 kinase through the phosphatidylinositol 3-kinase signaling pathway. J Biol Chem 275:25979–25984

    CAS  PubMed  Google Scholar 

  • Knapp LT, Klann E (2000) Superoxide-induced stimulation of protein kinase C via thiol modification and modulation of zinc content. J Biol Chem 275:24136–24145

    CAS  PubMed  Google Scholar 

  • Korichneva I (2006) Zinc dynamics in the myocardial redox signaling network. Antioxid Redox Signal 8:1707–1721

    CAS  PubMed  Google Scholar 

  • Korichneva I, Hoyos B, Chua R, Levi E, Hammerling U (2002) Zinc release from protein kinase C as the common event during activation by lipid second messenger or reactive oxygen. J Biol Chem 277:44327–44331

    CAS  PubMed  Google Scholar 

  • Kwak Y-D, Wang B, Pan W, Xu H, Jiang X, Liao F-F (2010) Functional interaction of phosphatase and tensin homologue (PTEN) with the E3 ligase NEDD4-1 during neuronal response to zinc. J Biol Chem 285:9847–9857

    CAS  PubMed  Google Scholar 

  • Laity JH, Andrews GK (2007) Understanding the mechanisms of zinc-sensing by metal-response element binding transcription factor-1 (MTF-1). Arch Biochem Biophys 463:201–210

    CAS  PubMed  Google Scholar 

  • Langmade SJ, Ravindra R, Daniels PJ, Andrews GK (2000) The transcription factor MTF-1 mediates metal regulation of the mouse ZnT1 gene. J Biol Chem 275:34803–34809

    CAS  PubMed  Google Scholar 

  • Law J, McBride S, Graham S, Nelson N, Slotnick B, Henkin R (1988) Zinc deficiency decreases the activity of calmodulin regulated cyclic nucleotide phosphodiesterases in vivo in selected rat tissues. Biol Trace Elem Res 16:221–226

    CAS  PubMed  Google Scholar 

  • Lee S, Chanoit G, McIntosh R, Zvara DA, Xu ZL (2009) Molecular mechanism underlying Akt activation in zinc-induced cardioprotection. Am J Physiol 297:H569–H575

    CAS  Google Scholar 

  • Lefebvre D, Boney CM, Ketelslegers J-M, Thissen J-P (1999) Inhibition of insulin-like growth factor-I mitogenic action by zinc chelation is associated with a decreased mitogen-activated protein kinase activation in RAT-1 fibroblasts. FEBS Lett 449:284–288

    CAS  PubMed  Google Scholar 

  • Li Y, Kimura T, Laity JH, Andrews GK (2006) The zinc-sensing mechanism of mouse MTF-1 involves linker peptides between the zinc fingers. Mol Cell Biol 26:5580–5587

    CAS  PubMed  Google Scholar 

  • Li B, Tan Y, Sun W, Fu Y, Miao L, Cai L (2013) The role of zinc in the prevention of diabetic cardiomyopathy and nephropathy. Toxicol Mech Methods 23:27–33

    CAS  PubMed  Google Scholar 

  • Liang D, Yang M, Guo B, Cao J, Yang L, Guo X, Li Y, Gao Z (2012) Zinc inhibits H2O2-induced MC3T3-E1 cells apoptosis via MAPK and PI3K/AKT pathways. Biol Trace Elem Res 148:420–429

    CAS  PubMed  Google Scholar 

  • Lichten LA, Cousins RJ (2009) Mammalian zinc transporters: nutritional and physiologic regulation. Annu Rev Nutr 29:153–176

    PubMed  Google Scholar 

  • Lichtlen P, Schaffner W (2001) The “metal transcription factor” MTF-1: biological facts and medical implications. Swiss Med Wkly 131:647–652

    CAS  PubMed  Google Scholar 

  • Lin CL, Tseng HC, Chen WP, Su MJ, Fang KM, Chen RF, Wu ML (2011) Intracellular zinc release-activated ERK-dependent GSK-3[beta]-p53 and Noxa-Mcl-1 signaling are both involved in cardiac ischemic-reperfusion injury. Cell Death Differ 18:1651–1663

    CAS  PubMed  Google Scholar 

  • Liuzzi JP, Cousins RJ (2004) Mammalian zinc transporters. Annu Rev Nutr 24:151–172

    CAS  PubMed  Google Scholar 

  • Liuzzi JP, Blanchard RK, Cousins RJ (2001) Differential regulation of zinc transporter 1, 2, and 4 mRNA expression by dietary zinc in rats. J Nutr 131:46–52

    CAS  PubMed  Google Scholar 

  • Liuzzi JP, Bobo JA, Lichten LA, Samuelson DA, Cousins RJ (2004) Responsive transporter genes within the murine intestinal-pancreatic axis form a basis of zinc homeostasis. Proc Natl Acad Sci USA 101:14355–14360

    CAS  PubMed  Google Scholar 

  • Liuzzi JP, Lichten LA, Rivera S, Blanchard RK, Aydemir TB, Knutson MD, Ganz T, Cousins RJ (2005) Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase response. Pro Natl Acad Sci USA 102:6843–6848

    CAS  Google Scholar 

  • Lu M, Fu D (2007) Structure of the zinc transporter YiiP. Science 317:1746–1748

    CAS  PubMed  Google Scholar 

  • Mao X, Kim B-E, Wang F, Eide DJ, Petris MJ (2007) A histidine-rich cluster mediates the ubiquitination and degradation of the human zinc transporter, hZIP4, and protects against zinc cytotoxicity. J Biol Chem 282:6992–7000

    CAS  PubMed  Google Scholar 

  • Maret W (1995) Metallothionein/disulfide interactions, oxidative stress, and the mobilization of cellular zinc. Neurochem Int 27:111–117

    CAS  PubMed  Google Scholar 

  • Maret W (2006) Zinc coordination environments in proteins as redox sensors and signal transducers. Antioxid Redox Signal 8:1419–1441

    CAS  PubMed  Google Scholar 

  • Maret W (2008) Metallothionein redox biology in the cytoprotective and cytotoxic functions of zinc. Exp Gerontol 43:363–369

    CAS  PubMed  Google Scholar 

  • Maret W, Vallee BL (1998) Thiolate ligands in metallothionein confer redox activity on zinc clusters. Proc Nat Acad Sci USA 95:3478–3482

    CAS  PubMed  Google Scholar 

  • Masaaki M, Hirano T (2008) Intracellular zinc homeostasis and zinc signaling. Cancer Sci 99:1515–1522

    Google Scholar 

  • McIntosh R, Lee S, Ghio AJ, Xi J, Zhu M, Shen X, Chanoit G, Zvara DA, Xu Z (2010) The critical role of intracellular zinc in adenosine A2 receptor activation induced cardioprotection against reperfusion injury. J Mol Cell Cardiol 49:41–47

    CAS  PubMed  Google Scholar 

  • McMahon RJ, Cousins RJ (1998) Regulation of the zinc transporter ZnT-1 by dietary zinc. Proc Natl Acad Sci USA 95:4841–4846

    CAS  PubMed  Google Scholar 

  • Mehta JL, Li DY (1999) Inflammation in ischemic heart disease: response to tissue injury or a pathogenetic villain? Cardiovasc Res 43:291–299

    CAS  PubMed  Google Scholar 

  • Murakami M, Hirano T (2008) Intracellular zinc homeostasis and zinc signaling. Cancer Sci 99:1512–1522

    Google Scholar 

  • Murphy BJ, Andrews GK, Bittel D, Discher DJ, McCue J, Green CJ, Yanovsky M, Giaccia A, Sutherland RM, Laderoute KR, Webster KA (1999) Activation of metallothionein gene expression by hypoxia involves metal response elements and metal transcription factor-1. Cancer Res 59:1315–1322

    CAS  PubMed  Google Scholar 

  • Nolte C, Gore A, Sekler I, Kresse W, Hershfinkel M, Hoffmann A, Kettenmann H, Moran A (2004) ZnT-1 expression in astroglial cells protects against zinc toxicity and slows the accumulation of intracellular zinc. Glia 48:145–155

    PubMed  Google Scholar 

  • Ohana E, Hoch E, Keasar C, Kambe T, Yifrach O, Hershfinkel M, Sekler I (2009) Identification of the Zn2+ binding site and mode of operation of a mammalian Zn2+ transporter. J Biol Chem 284:17677–17686

    CAS  PubMed  Google Scholar 

  • Oshima Y, Fujio Y, Nakanishi T, Itoh N, Yamamoto Y, Negoro S, Tanaka K, Kishimoto T, Kawase I, Azuma J (2005) STAT3 mediates cardioprotection against ischemia/reperfusion injury through metallothionein induction in the heart. Cardiovasc Res 65:428–435

    CAS  PubMed  Google Scholar 

  • Palmiter RD, Findley SD (1995) Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. EMBO J 14:639–649

    CAS  PubMed  Google Scholar 

  • Park KS, Ahn YS, Kim JA, Yun MS, Seong BL, Choi KY (2002) Extracellular zinc stimulates ERK-dependent activation of p21(Cip/WAF1) and inhibits proliferation of colorectal cancer cells. Br J Pharmacol 137:597–607

    CAS  PubMed  Google Scholar 

  • Parker PJ, Coussens L, Totty N, Rhee L, Young S, Chen E, Stabel S, Waterfield MD, Ullrich A (1986) The complete primary structure of protein kinase C: the major phorbol ester receptor. Science 233:853–859

    CAS  PubMed  Google Scholar 

  • Percival MD, Yeh B, Falgueyret J-P (1997) Zinc dependent activation of cAMP-specific phosphodiesterase (PDE4A). Biochem Biophys Res Commun 241:175–180

    CAS  PubMed  Google Scholar 

  • Powell S, Saltman P, Uretzky G, Chevion M (1990) The effect of zinc on reperfusion arrhythmias in the isolated perfused rat heart. Free Radic Biol Med 8:33–46

    CAS  PubMed  Google Scholar 

  • Powell SR, Hall D, Aiuto L, Wapnir RA, Teichberg S, Tortolani AJ (1994) Zinc improves postischemic recovery of isolated rat hearts through inhibition of oxidative stress. Am J Physiol 266:H2497–H2507

    CAS  PubMed  Google Scholar 

  • Prasad AS (2012) Discovery of human zinc deficiency: 50 years later. J Trace Elem Med Biol 26:66–69

    CAS  PubMed  Google Scholar 

  • Prasad AS, Halsted JA, Nadimi M (1961) Syndrome of iron deficiency anemia, hepatosplenomegaly, hypogonadism, dwarfism and geophagia. Am J Med 31:532–546

    CAS  PubMed  Google Scholar 

  • Qian J, Noebels JL (2005) Visualization of transmitter release with zinc fluorescence detection at the mouse hippocampal mossy fibre synapse. J Physiol 566:747–758

    CAS  PubMed  Google Scholar 

  • Samet JM, Graves LM, Quay J, Dailey LA, Devlin RB, Ghio AJ, Wu W, Bromberg PA, Reed W (1998) Activation of MAPKs in human bronchial epithelial cells exposed to metals. Am J Physiol 275:L551–L558

    CAS  PubMed  Google Scholar 

  • Samet JM, Dewar BJ, Wu W, Graves LM (2003) Mechanisms of Zn2+-induced signal initiation through the epidermal growth factor receptor. Toxicol Appl Pharmacol 191:86–93

    CAS  PubMed  Google Scholar 

  • Sánchez-Blázquez P, Rodríguez-Muñoz M, Bailón C, Garzón J (2012) GPCRs promote the release of zinc ions mediated by nNOS/NO and the redox transducer RGSZ2 protein. Antioxid Redox Signal 17(9):1163–1177

    PubMed  Google Scholar 

  • Satoh M, Naganuma A, Imura N (1988) Involvement of cardiac metallothionein in prevention of adriamycin induced lipid peroxidation in the heart. Toxicology 53:231–237

    CAS  PubMed  Google Scholar 

  • Seo SR, Chong SA, Lee S-I, Sung JY, Ahn YS, Chung KC, Seo JT (2001) Zn2+-induced ERK activation mediated by reactive oxygen species causes cell death in differentiated PC12 cells. J Neurochem 78:600–610

    CAS  PubMed  Google Scholar 

  • Shahbaz AU, Zhao T, Zhao W, Johnson PL, Ahokas RA, Bhattacharya SK, Sun Y, Gerling IC, Weber KT (2011) Calcium and zinc dyshomeostasis during isoproterenol-induced acute stressor state. Am J Physiol 300:H636–H644

    CAS  Google Scholar 

  • Sharir H, Zinger A, Nevo A, Sekler I, Hershfinkel M (2010) Zinc released from injured cells is acting via the Zn2+-sensing receptor, ZnR, to trigger signaling leading to epithelial repair. J Biol Chem 285:26097–26106

    CAS  PubMed  Google Scholar 

  • Shokrzadeh M, Ghaemian A, Salehifar E, Aliakbari S, Saravi S, Ebrahimi P (2009) Serum zinc and copper levels in ischemic cardiomyopathy. Biol Trace Elem Res 127:116–123

    CAS  PubMed  Google Scholar 

  • Shuai Y, Guo J-B, Peng S-Q, Zhang L-S, Guo J, Han G, Dong Y-S (2007) Metallothionein protects against doxorubicin-induced cardiomyopathy through inhibition of superoxide generation and related nitrosative impairment. Toxicol Lett 170:66–74

    CAS  PubMed  Google Scholar 

  • Simons TJ (1991) Intracellular free zinc and zinc buffering in human red blood cells. J Membr Biol 123:63–71

    CAS  PubMed  Google Scholar 

  • Stefanidou M, Maravelias C, Dona A, Spiliopoulou C (2006) Zinc: a multipurpose trace element. Arch Toxicol 80:1–9

    CAS  PubMed  Google Scholar 

  • Storjohann L, Holst B, Schwartz TW (2008) Molecular mechanism of Zn2+ agonism in the extracellular domain of GPR39. FEBS Lett 582:2583–2588

    CAS  PubMed  Google Scholar 

  • Sugden PH, Clerk A (1997) Regulation of the ERK subgroup of MAP kinase cascades through G protein-coupled receptors. Cell Signal 9:337–351

    CAS  PubMed  Google Scholar 

  • Tal TL, Graves LM, Silbajoris R, Bromberg PA, Wu W, Samet JM (2006) Inhibition of protein tyrosine phosphatase activity mediates epidermal growth factor receptor signaling in human airway epithelial cells exposed to Zn2+. Toxicol Appl Pharmacol 214:16–23

    CAS  PubMed  Google Scholar 

  • Tang X, Shay NF (2001) Zinc has an insulin-like effect on glucose transport mediated by phosphoinositol-3-kinase and Akt in 3T3-L1 fibroblasts and adipocytes. J Nutr 131:1414–1420

    CAS  PubMed  Google Scholar 

  • Tapazoglou E, Prasad AS, Hill G, Brewer GJ, Kaplan J (1985) Decreased natural killer cell activity in patients with zinc deficiency with sickle cell disease. J Lab Clin Med 105:19–22

    CAS  PubMed  Google Scholar 

  • Tapiero H, Tew KD (2003) Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed Pharmacother 57:399–411

    CAS  PubMed  Google Scholar 

  • Taylor KM, Hiscox S, Nicholson RI, Hogstrand C, Kille P (2012) Protein kinase CK2 triggers cytosolic zinc signaling pathways by phosphorylation of zinc channel ZIP7. Sci Signal 5(210):ra11

    PubMed  Google Scholar 

  • Timmers L, Pasterkamp G, de Hoog VC, Arslan F, Appelman Y, de Kleijn DPV (2012) The innate immune response in reperfused myocardium. Cardiovasc Res 94:276–283

    CAS  PubMed  Google Scholar 

  • Truong-Tran AQ, Carter J, Ruffin RE, Zalewski PD (2001) The role of zinc in caspase activation and apoptotic cell death. Biometals 14:315–330

    CAS  PubMed  Google Scholar 

  • Tsuda M, Imaizumi K, Katayama T, Kitagawa K, Wanaka A, Tohyama M, Takagi T (1997) Expression of zinc transporter gene, ZnT-1, is induced after transient forebrain ischemia in the gerbil. J Neurosci 17:6678–6684

    CAS  PubMed  Google Scholar 

  • Valentine RA, Jackson KA, Christie GR, Mathers JC, Taylor PM, Ford D (2007) ZnT5 variant B is a bidirectional zinc transporter and mediates zinc uptake in human intestinal Caco-2 cells. J Biol Chem 282:14389–14393

    CAS  PubMed  Google Scholar 

  • Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73:79–118

    CAS  PubMed  Google Scholar 

  • Vasto S, Mocchegiani E, Malavolta M, Cuppari I, ListÌ F, Nuzzo D, Ditta V, Candore G, Caruso C (2007) Zinc and inflammatory/immune response in aging. Ann N Y Acad Sci 1100:111–122

    CAS  PubMed  Google Scholar 

  • Vinten-Johansen J (2004) Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovasc Res 61:481–497

    CAS  PubMed  Google Scholar 

  • Viswanath K, Bodiga S, Balogun V, Zhang A, Bodiga V (2011) Cardioprotective effect of zinc requires ErbB2 and Akt during hypoxia/reoxygenation. Biometals 24:171–180

    CAS  PubMed  Google Scholar 

  • von Bülow V, Rink L, Haase H (2005a) Zinc-mediated inhibition of cyclic nucleotide phosphodiesterase activity and expression suppresses TNF-alpha and IL-1 beta production in monocytes by elevation of guanosine 3′,5′-cyclic monophosphate. J Immunol 175:4697–4705

    Google Scholar 

  • von Bülow V, Rink L, Haase H (2005b) Zinc-mediated inhibition of cyclic nucleotide phosphodiesterase activity and expression suppresses TNF-alpha and IL-1 beta production in monocytes by elevation of guanosine 3′,5′-cyclic monophosphate. J Immunol 175(7):4697–4705

    Google Scholar 

  • Waetjen W, Benters J, Haase H, Schwede F, Jastorff B, Beyersmann D (2001) Zn2+ and Cd2+ increase the cyclic GMP level in PC12 cells by inhibition of the cyclic nucleotide phosphodiesterase. Toxicology 157:167–175

    Google Scholar 

  • Wang G-W, Zhou Z, Klein JB, Kang YJ (2001) Inhibition of hypoxia/reoxygenation-induced apoptosis in metallothionein-overexpressing cardiomyocytes. Am J Physiol 280:H2292–H2299

    CAS  Google Scholar 

  • Weaver BP, Dufner-Beattie J, Kambe T, Andrews GK (2007) Novel zinc-responsive post-transcriptional mechanisms reciprocally regulate expression of the mouse Slc39a4 and Slc39a5 zinc transporters (Zip4 and Zip5). Biol Chem 388:1301–1312

    CAS  PubMed  Google Scholar 

  • Wu W, Graves LM, Jaspers I, Devlin RB, Reed W, Samet JM (1999) Activation of the EGF receptor signaling pathway in human airway epithelial cells exposed to metals. Am J Physiol 277:L924–L931

    CAS  PubMed  Google Scholar 

  • Wu W, Wang X, Zhang W, Reed W, Samet JM, Whang YE, Ghio AJ (2003) Zinc-induced PTEN protein degradation through the proteasome pathway in human airway epithelial cells. J Biol Chem 278:28258–28263

    CAS  PubMed  Google Scholar 

  • Wu W, Silbajoris RA, Whang YE, Graves LM, Bromberg PA, Samet JM (2005) p38 and EGF receptor kinase-mediated activation of the phosphatidylinositol 3-kinase/Akt pathway is required for Zn2+-induced cyclooxygenase-2 expression. Am J Physiol 289:L883–L889

    CAS  Google Scholar 

  • Xi J, Tian W, Zhang L, Jin Y, Xu Z (2010) Morphine prevents the mitochondrial permeability transition pore opening through NO/cGMP/PKG/Zn2+/GSK-3beta signal pathway in cardiomyocytes. Am J Physiol 298:H601–H607

    CAS  Google Scholar 

  • Xue W, Liu Q, Cai L, Wang Z, Feng W (2009) Stable overexpression of human metallothionein-IIA in a heart-derived cell line confers oxidative protection. Toxicol Lett 188:70–76

    CAS  PubMed  Google Scholar 

  • Yamasaki S, Sakata-Sogawa K, Hasegawa A, Suzuki T, Kabu K, Sato E, Kurosaki T, Yamashita S, Tokunaga M, Nishida K, Hirano T (2007) Zinc is a novel intracellular second messenger. J Cell Biol 177:637–645

    CAS  PubMed  Google Scholar 

  • Yamashita S, Miyagi C, Fukada T, Kagara N, Che Y-S, Hirano T (2004) Zinc transporter LIVI controls epithelial–mesenchymal transition in zebrafish gastrula organizer. Nature 429:298–302

    CAS  PubMed  Google Scholar 

  • Yasuda S-I, Miyazaki T, Munechika K, Yamashita M, Ikeda Y, Kamizono A (2007) Isolation of Zn2+ as an endogenous agonist of GPR39 from fetal bovine serum. J Recept Signal Transduct 27:235–246

    CAS  Google Scholar 

  • Zago MP, Mackenzie GG, Adamo AM, Keen CL, Oteiza PI (2005) Differential modulation of MAP kinases by zinc deficiency in IMR-32 cells: role of H(2)O(2). Antioxid Redox Signal 7:1773–1782

    CAS  PubMed  Google Scholar 

  • Zhou Z, Liu J, Song Z, McClain CJ, Kang YJ (2008) Zinc supplementation inhibits hepatic apoptosis in mice subjected to a long-term ethanol exposure. Exp Biol Med 233:540–548

    CAS  Google Scholar 

  • Zhou J, McIntosh R, Zvara DA, Xu Z (2011) The critical role of the zinc transporter Zip2 in hypoxia/reoxygenation injury. J Mol Cell Cardiol 51:S15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhelong Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Z., Zhou, J. Zinc and myocardial ischemia/reperfusion injury. Biometals 26, 863–878 (2013). https://doi.org/10.1007/s10534-013-9671-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-013-9671-x

Keywords

Navigation