Skip to main content

Advertisement

Log in

Cerium Oxide-Incorporated Calcium Silicate Coating Protects MC3T3-E1 Osteoblastic Cells from H2O2-Induced Oxidative Stress

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Oxidative stress regulates cellular functions in multiple pathological conditions, including bone formation by osteoblastic cells. In this work, the protective effects of cerium oxide (CeO2)-incorporated calcium silicate (CeO2-CS) coating on the response of osteoblasts to H2O2-induced oxidative stress and the related mechanism were examined. CeO2 incorporation significantly improved osteoblast viability and reduced cell apoptosis caused by H2O2 when compared with the control. H2O2-induced reduction of differentiation marker alkaline phosphatase (ALP) was recovered in the presence of the CeO2-CS coating. The above effects were mediated by the antioxidant effect of CeO2. The CeO2-CS coating immersed in 0.1 mM H2O2 aqueous solution was able to degrade 64 % of it in 1 week. In addition, CeO2 incorporation decreased reactive oxygen species (ROS) production and suppressed malondialdehyde (MDA) formation in H2O2-treated osteoblasts. Taken together, CeO2-CS biomedical coatings with antioxidant property would be promising for bone regeneration under oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Rosenfeldt F, Wilson M, Lee G, Kure C, Ou RC, Braun L, de Haan J (2013) Oxidative stress in surgery in an ageing population: pathophysiology and therapy. Exp Gerontol 48(1):45–54

    Article  CAS  PubMed  Google Scholar 

  2. Kinov P, Leithner A, Radl R, Bodo K, Khoschsorur GA, Schauenstein K, Windhager R (2006) Role of free radicals in aseptic loosening of hip arthroplasty. J Orthop Res 24(1):55–62

    Article  CAS  PubMed  Google Scholar 

  3. Bai XC, Lu D, Liu AL, Zhang ZM, Li XM, Zou ZP, Zeng WS, Cheng BL, Luo SQ (2005) Reactive oxygen species stimulates receptor activator of NF-kappa B ligand expression in osteoblast. J Biol Chem 280(17):17497–17506

    Article  CAS  PubMed  Google Scholar 

  4. Wauquier F, Leotoing L, Coxam V, Guicheux J, Wittrant Y (2009) Oxidative stress in bone remodelling and disease. Trends Mol Med 15(10):468–477

    Article  CAS  PubMed  Google Scholar 

  5. Lee DH, Lim BS, Lee YK, Yang HC (2006) Effects of hydrogen peroxide (H2O2) on alkaline phosphatase activity and matrix mineralization of odontoblast and osteoblast cell lines. Cell Biol Toxicol 22(1):39–46

    Article  CAS  PubMed  Google Scholar 

  6. Jung WW (2014) Protective effect of apigenin against oxidative stress-induced damage in osteoblastic cells. Int J Mol Med 33(5):1327–1334

    CAS  PubMed  Google Scholar 

  7. Ni SY, Chang J, Chou L, Zhai WY (2007) Comparison of osteoblast-like cell responses to calcium silicate and tricalcium phosphate ceramics in vitro. J Biomed Mater Res Part B-Appl Biomater 80B(1):174–183

    Article  CAS  Google Scholar 

  8. Liu XY, Morra M, Carpi A, Li B (2008) Bioactive calcium silicate ceramics and coatings. Biomed Pharmacother 62(8):526–529

    Article  CAS  PubMed  Google Scholar 

  9. Yi DL, Wu CT, Ma XB, Ji H, Zheng XB, Chang J (2012) Preparation and in vitro evaluation of plasma-sprayed bioactive akermanite coatings. Biomed Mater 7(6)

  10. Zhang WJ, Wang GC, Liu Y, Zhao XB, Zou DH, Zhu C, Jin YQ, Huang QF, Sun J, Liu XY, Jiang XQ, Zreiqat H (2013) The synergistic effect of hierarchical micro/nano-topography and bioactive ions for enhanced osseointegration. Biomaterials 34(13):3184–3195

    Article  CAS  PubMed  Google Scholar 

  11. Li K, Yu JM, Xie YT, Huang LP, Ye XJ, Zheng XB (2013) Effects of Zn content on crystal structure, cytocompatibility, antibacterial activity, and chemical stability in Zn-modified calcium silicate coatings. J Therm Spray Technol 22(6):965–973

    Article  CAS  Google Scholar 

  12. Inaba H, Tagawa H (1996) Ceria-based solid electrolytes—review. Solid State Ionics 83(1–2):1–16

    Article  CAS  Google Scholar 

  13. Zantye PB, Kumar A, Sikder AK (2004) Chemical mechanical planarization for microelectronics applications. Mater Sci Eng R-Rep 45(3–6):89–220

    Article  Google Scholar 

  14. Celardo I, Pedersen JZ, Traversa E, Ghibelli L (2011) Pharmacological potential of cerium oxide nanoparticles. Nanoscale 3(4):1411–1420

    Article  CAS  PubMed  Google Scholar 

  15. Mandoli C, Pagliari F, Pagliari S, Forte G, Di Nardo P, Licoccia S, Traversa E (2010) Stem cell aligned growth induced by CeO2 nanoparticles in PLGA scaffolds with improved bioactivity for regenerative medicine. Adv Funct Mater 20(10):1617–1624

    Article  CAS  Google Scholar 

  16. Zhang JH, Zhu YF (2014) Synthesis and characterization of CeO2-incorporated mesoporous calcium-silicate materials. Micropor Mesopor Mat 197:244–251

    Article  CAS  Google Scholar 

  17. Nicolini V, Gambuzzi E, Malavasi G, Menabue L, Menziani MC, Lusvardi G, Pedone A, Benedetti F, Luches P, D’Addato S, Valeri S (2015) Evidence of catalase mimetic activity in Ce3+/Ce4+ doped bioactive glasses. J Phys Chem B 119(10):4009–4019

    Article  CAS  PubMed  Google Scholar 

  18. Li K, Yu JM, Xie YT, Huang LP, Ye XJ, Zheng XB (2011) Chemical stability and antimicrobial activity of plasma sprayed bioactive Ca2ZnSi2O7 coating. J Mater Sci Mater Med 22(12):2781–2789

    Article  CAS  PubMed  Google Scholar 

  19. Huang YL, Lee CH, Liao JF, Liu YW, Chiou WF (2015) Protective effects of ugonin K on hydrogen peroxide-induced osteoblast cell damage. J Funct Foods 15:487–496

    Article  CAS  Google Scholar 

  20. Li K, Yu J, Xie Y, Huang L, Ye X, Zheng X (2011) Chemical stability and antimicrobial activity of plasma sprayed bioactive Ca2ZnSi2O7 coating. J Mater Sci Mater Med 22(12):2781–2789

    Article  CAS  PubMed  Google Scholar 

  21. Wu CT, Fan W, Gelinsky M, Xiao Y, Simon P, Schulze R, Doert T, Luo YX, Cuniberti G (2011) Bioactive SrO-SiO2 glass with well-ordered mesopores: characterization, physiochemistry and biological properties. Acta Biomater 7(4):1797–1806

    Article  CAS  PubMed  Google Scholar 

  22. Cheng YJ, Chien CT, Chen CF (2003) Oxidative stress in bilateral total knee replacement, under ischaemic tourniquet. J of Bone Joint Surg Brit Volume 85B(5):679–682

    Google Scholar 

  23. Hosoya S, Suzuki H, Yamamoto M, Kobayashi K, Abiko Y (1998) Alkaline phosphatase and type I collagen gene expressions were reduced by hydroxyl radical-treated fibronectin substratum. Mol Genet Metab 65(1):31–34

    Article  CAS  PubMed  Google Scholar 

  24. Gardner AM, Xu FH, Fady C, Jacoby FJ, Duffey DC, Tu YP, Lichtenstein A (1997) Apoptotic vs nonapoptotic cytotoxicity induced by hydrogen peroxide. Free Radic Biol Med 22(1–2):73–83

    Article  CAS  PubMed  Google Scholar 

  25. Palomba L, Sestili P, Columbaro M, Falcieri E, Cantoni O (1999) Apoptosis and necrosis following exposure of U937 cells to increasing concentrations of hydrogen peroxide: the effect of the poly(ADP-ribose)polymerase inhibitor 3-aminobenzamide. Biochem Pharmacol 58(11):1743–1750

    Article  CAS  PubMed  Google Scholar 

  26. Chen SZ, Hou YJ, Cheng G, Zhang CM, Wang SX, Zhang JC (2013) Cerium oxide nanoparticles protect endothelial cells from apoptosis induced by oxidative stress. Biol Trace Elem Res 154(1):156–166

    Article  CAS  PubMed  Google Scholar 

  27. Xiao Y, Li X, Cui YQ, Zhang J, Liu LJ, Xie XY, Hao H, He GL, Chen MJ, Verfaillie CM, Liu ZH, Zhu H, Lei MX, Liu ZG (2014) Hydrogen peroxide inhibits the proliferation and endothelial differentiation of bone marrow stem cells partially through reactive oxygen species generation. Life Sci 112(1–2):33–40

    Article  CAS  PubMed  Google Scholar 

  28. Kim HS, Suh KS, Ko A, Sul D, Choi D, Lee SK, Jung WW (2013) The flavonoid glabridin attenuates 2-deoxy-D-ribose-induced oxidative damage and cellular dysfunction in MC3T3-E1 osteoblastic cells. Int J Mol Med 31(1):243–251

    CAS  PubMed  Google Scholar 

  29. Heckert EG, Karakoti AS, Seal S, Self WT (2008) The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials 29(18):2705–2709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang YJ, Dong H, Lyu GM, Zhang HY, Ke J, Kang LQ, Teng JL, Sun LD, Si R, Zhang J, Liu YJ, Zhang YW, Huang YH, Yan CH (2015) Engineering the defect state and reducibility of ceria based nanoparticles for improved anti-oxidation performance. Nanoscale 7(33):13981–13990

    Article  CAS  PubMed  Google Scholar 

  31. Dunnick KM, Pillai R, Pisane KL, Stefaniak AB, Sabolsky EM, Leonard SS (2015) The effect of cerium oxide nanoparticle valence state on reactive oxygen species and toxicity. Biol Trace Elem Res 166(1):96–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xu C, Qu XG (2014) Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. Npg Asia Mater 6:e90

  33. Zhou GQ, Gu GQ, Li Y, Zhang Q, Wang WY, Wang SX, Zhang JC (2013) Effects of cerium oxide nanoparticles on the proliferation, differentiation, and mineralization function of primary osteoblasts In Vitro. Biol Trace Elem Res 153(1–3):411–418

    Article  CAS  PubMed  Google Scholar 

  34. Ball JP, Mound BA, Monsalve AG, Nino JC, Allen JB (2015) Biocompatibility evaluation of porous ceria foams for orthopedic tissue engineering. J Biomed Mater Res Part A 103(1):8–15

    Article  Google Scholar 

  35. Li H, Yang ZY, Liu C, Zeng YP, Hao YH, Gu Y, Wang WD, Li R (2015) PEGylated ceria nanoparticles used for radioprotection on human liver cells under gamma-ray irradiation. Free Radic Biol Med 87:26–35

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51502328, No. 81301537, No. 81300917).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuebin Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Xie, Y., You, M. et al. Cerium Oxide-Incorporated Calcium Silicate Coating Protects MC3T3-E1 Osteoblastic Cells from H2O2-Induced Oxidative Stress. Biol Trace Elem Res 174, 198–207 (2016). https://doi.org/10.1007/s12011-016-0680-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0680-9

Keywords

Navigation