Skip to main content
Log in

Neuroprotective Effect of Portulaca oleraceae Ethanolic Extract Ameliorates Methylmercury Induced Cognitive Dysfunction and Oxidative Stress in Cerebellum and Cortex of Rat Brain

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Methylmercury (MeHg) is highly toxic, and its principal target tissue in human is the nervous system, which has made MeHg intoxication a public health concern for many decades. Portulaca oleraceae (purslane), a member of the Portulacaceae family, is widespread as a weed and has been ranked the eighth most common plant in the world. In this study, we sought for potential beneficial effects of Portulaca oleracea ethanolic extract (POEE) against the neurotoxicity induced by MeHg in cerebellum and cortex of rats. Male Wistar rats were administered with MeHg orally at a dose of 5 mg/kg b.w. for 21 days. Experimental rats were given MeHg and also administered with POEE (4 mg/kg, orally) 1 h prior to the administration of MeHg for 21 days. After MeHg exposure, we determine the mercury concentration by atomic absorption spectroscopy (AAS); mercury content was observed high in MeHg-induced group. POEE reduced the mercury content. We also observed that the activities of catalase, superoxide dismutase, glutathione peroxidase, and the level of glutathione were reduced. The levels of glutathione reductase and thiobarbituric acid reactive substance were found to be increased. The above biochemical changes were found to be reversed with POEE. Behavioral changes like decrease tail flick response, longer immobility time, and decreased motor activity were noted down during MeHg exposure. POEE pretreatment offered protection from these behavioral changes. MeHg intoxication also caused histopathological changes in cerebellum and cortex, which was found to be normalized by treatment with POEE. The present results indicate that POEE has protective effect against MeHg-induced neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Clarkson TW, Magos L, Myers GJ (2003) The toxicology of mercury current exposures and clinical manifestations. N Engl J Med 349:1731–1737

    Article  CAS  PubMed  Google Scholar 

  2. Aschner M, Syversen T, Souza DO, Rocha JB, Farina M (2007) Involvement of glutamate and reactive oxygen species in methylmercury neurotoxicity. Braz J Med Biol Res 40:285–291

    Article  CAS  PubMed  Google Scholar 

  3. Allen JW, Mutkus LA, Aschner M (2001) Methylmercury mediated inhibition of 3 H-D- aspartate transport in cultured astrocytes is reversed by the antioxidant catalase. Brain Res 902:92–100

    Article  CAS  PubMed  Google Scholar 

  4. Farina M, Campos F, Vendrell I, Berenguer J, Barzi M, Pons S (2009) Probucol increases glutathione peroxidase-1 activity and displays long-lasting protection against methylmercury toxicity in cerebellar granule cells. Toxicol Sci 112:416–426

    Article  CAS  PubMed  Google Scholar 

  5. Bush AI (2000) Metals neuroscience. Curr Opin Chem Biol 4:184–191

    Article  CAS  PubMed  Google Scholar 

  6. Shanker G, Syversen T, Aschner JL, Aschner M (2005) Modulatory effect of glutathione status and antioxidants on methylmercury-induced free radical formation in primary cultures of cerebral astrocytes. Brain Res Mol Brain Res 137:11–22

    Article  CAS  PubMed  Google Scholar 

  7. Kaur P, Aschner M, Syversen T (2006) Glutathione modulation influences methylmercury induced neurotoxicity in primary cell cultures of neurons and astrocytes. Neurotoxicology 27:492–500

    Article  CAS  PubMed  Google Scholar 

  8. Gupta R, Flora SJ (2006) Effect of Centella asiatica on arsenic-induced oxidative stress and metal distribution in rats. J Appl Toxicol 26:213–222

    Article  CAS  PubMed  Google Scholar 

  9. Franco JL, Braga HC, Stringari J, Missau FC, Posser T, Mendes BG, Leal RB, Santos AR, Dafre AL, Pizzolatti MG, Farina M (2007) Mercurial-induced hydrogen peroxide generation in mouse brain mitochondria: protective effects of quercetin. Chem Res Toxicol 20:1919–1926

    Article  CAS  PubMed  Google Scholar 

  10. Xu Y, Li G, Han C, Sun L, Zhao R, Cui S (2005) Protective effects of Hippophae rhamnoides L. juice on lead-induced neurotoxicity in mice. Biol Pharm Bul 28:490–494

    Article  CAS  Google Scholar 

  11. Sumathi T, Shobana C, Christinal J, Anusha C (2012) Protective effect of Bacopa monniera on methyl mercury-induced oxidative stress in cerebellum of rats. Cell Mol Neurobiol 32:979–987

    Article  PubMed  Google Scholar 

  12. Chowdhary CV, Meruva A, Naresh K, Ranjithkumar AE (2012) A review on phytochemical and pharmacological profile of Portulaca oleracea Linn(purslane). Int J Res Ayur Pharm 4(1):34–37

    Article  Google Scholar 

  13. Abdel Moneim E, Nasar IA, Mohamed DA, Al-Quraishy S (2012) Neuronal activities of Portulaca olereacea in adult rats. J Med Plants Res 6(16):3162–3168

    Google Scholar 

  14. Wanyin Wang MB, Limin Gu MB, Liwei Dong MB, Xialoi Wang MB, Changquan LM (2007) Protective effect of Portulaca olereacea extract on hypoxic nerve tissue and its mechanism. Asia Pac J Clin Nutr 16(1):227–233

    PubMed  Google Scholar 

  15. Zhang XJ, Ji YB, ZHY Q, JCh X, Wang L (2002) Experimental studies on antibiotic functions of Portulaca oleracea L. in vitro. Chinese J Microecol 14:277–280

    Google Scholar 

  16. Xiang L, Xing D, Wang W, Wang R, Ding Y, Du L (2005) Alkaloids from Portulaca oleracea L. Phytochemistry 66:2595–2601

    Article  CAS  PubMed  Google Scholar 

  17. Rashed AN, Afifi FU, Disi AM (2003) Simple evaluation of the wound healing activity of a crude extract of Portulaca oleracea L. (growing in Jordan) in Mus musculus JVI-1. J Ethnopharmacol 88:131–136

    Article  CAS  PubMed  Google Scholar 

  18. Ling C (2004) Effects of purslane herb on stress ability of aging mice induced by D-galactose. J Chin Inter Mel 5:361–363

    Article  Google Scholar 

  19. Radhakrishnan R, Zakaria MNM, Islam MW, Chen HB, Kamil M, Chan K, Al-Attas A (2001) Neuropharmacological actions of Portulaca oleracea L v. sativa (Hawk). J Ethnopharmacol 76:171–176

    Article  CAS  PubMed  Google Scholar 

  20. Yamashita T, Ando Y, Nakamura M, Obayashi K, Terazaki H, Haraoka K, Guo SX, Ueda M, Uchino M (2004) Inhibitory effect of a-tocopherol on methylmercury-induced oxidative stress. Environ Health Prev Med 9:111–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Duham NW, Miya TS (1957) A note on a simple apparatus for detecting neurological deficit in rats and mice. J Am Pharm Assoc 46:208–209

    Article  Google Scholar 

  22. Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacol 85:367–370

    Article  CAS  Google Scholar 

  23. Hara K, Saito Y, Kirihara Y, Yamada Y, Sakura S, Kosaka Y (1999) The interaction of antinociceptive effects of morphine and GABA receptor agonists within the rat spinal cord. Anesth Analga 89:422–427

    CAS  Google Scholar 

  24. Porsolt RD, Le Pichon M, Jalfre M (1997) Depression: a new animal model sensitive to antidepressant treatments. Nature 266:730–732

    Article  Google Scholar 

  25. Dalvi A, Lucki I (1999) Murine models of depression. Psychopharmacol. 147(14–6):26

    Google Scholar 

  26. Kim CY, Watanabe C, Kasanuma Y, Satoh H (1995) Inhibition of glutamyl transpeptidase decreases renal deposition of mercury after mercury vapour exposure. Arch Toxicol 69:722–724

    Article  CAS  PubMed  Google Scholar 

  27. Okhawa H, Ohishi N, Yagi K (1997) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Google Scholar 

  28. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  CAS  PubMed  Google Scholar 

  29. Moron M, Depierre JW, Mannervik BT (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta 582:67–78

    Article  CAS  PubMed  Google Scholar 

  30. Rotruck JT, Popa AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstar WG (1973) Selenium: biochemical role as a component of GPx. Science 179:588–590

    Article  CAS  PubMed  Google Scholar 

  31. Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–490

    Article  CAS  PubMed  Google Scholar 

  32. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

    Article  CAS  PubMed  Google Scholar 

  33. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  34. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem. 193:265–275

    CAS  PubMed  Google Scholar 

  35. Tchounwou PB, Ayensu WK, Ninashvili N, Sutton D (2003) Environmental exposure to mercury and its toxicopathologic implications for public health. Environ Toxicol 18:149–175

    Article  CAS  PubMed  Google Scholar 

  36. Farina M, Aschner M, Rocha JB (2011a) Oxidative stress in MeHg induced neurotoxicity. Toxicol Appl Pharmaco 256:405–417

    Article  CAS  Google Scholar 

  37. Farina M, Rocha JB, Aschner M (2011b) Mechanisms of methylmercury- induced neurotoxicity: evidence from experimental studies. Life Sci 89:555–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Grandjean P, Weihe P, White RF, Debes F, Araki S, Yokoyama K, Murata K, Sorenson N, Dahl R, Jørgensen PJ (1997) Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury. Neurotoxicol Teratol 19(6):417–428

    Article  CAS  PubMed  Google Scholar 

  39. Sakamoto M, Nakano A, Kajiwara Y, Naruse I, Fujisaki T (1993) Effects of methyl mercury in postnatal developing rats. Environ Res 61:43–50

    Article  CAS  PubMed  Google Scholar 

  40. Auger N, Kofman O, Kosatsky T, Armstrong B (2005) Low-level methylmercury exposure as a risk factor for neurologic abnormalities in adults. Neurotoxicology 26:149–157

    Article  CAS  PubMed  Google Scholar 

  41. Zahir F, Shamin J, Rizwi Haq SK, Khan RH (2005) Low dose mercury toxicity and human health. Environ Toxicol Pharmacol 20:351–360

    Article  CAS  PubMed  Google Scholar 

  42. Dietrich MO, Mantese CE, Dos Anjos G, Souza DO, Farina M (2005) Motor impairment induced by oral exposure to methylmercury in adult mice. Environ Toxicol Pharmacol 19:169–175

    Article  CAS  PubMed  Google Scholar 

  43. Chuu JJ, Liu SH, Lin-Shiau SY (2007) Differential neurotoxic effects of methylmercury and mercuric sulfide in rats. Toxicol Lett 169(2):109–120

    Article  CAS  PubMed  Google Scholar 

  44. Nabi S, Ara A, Rizvi SJ (2012) Effects of methylmercury on depression like behaviour in rats: a study mitigated by exogenous vitamins. Iran J Pharm Ther 11(1):1–5

    CAS  Google Scholar 

  45. Cryan JF, Mombereau C, Vassout A (2005) The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 29(4–5):571–625

    Article  CAS  PubMed  Google Scholar 

  46. Reddy R, Rajesham VV, Kiran Kumar S, Prasanakumar J, Ramesh M, Suba V (2011) Neuropharmacological profile of Portulaca olaracea l. sativa on animal models. 1(2):33–36.

  47. Flohe L (1971) Glutathione peroxidase: enzymology and biological aspects. Klin Wochenschr 49:669–683

    Article  CAS  PubMed  Google Scholar 

  48. Franco JL, Teixeira A, Meotti FC, Ribas CM, Stringari J, Garcia Pomblum SC, Moro AM, Bohrer D, Bairros AV, Dafre AL, Santos ARS, Farina M (2006) Cerebellar thiol status and motor deficit after lactational exposure to methylmercury. Environ Res 102:22–28

    Article  CAS  PubMed  Google Scholar 

  49. Passos CJS, Sampaio DS, Lemire M, Fillion M, Guimaraes JRD, Lucotte M, Mergler D (2008) Daily mercury intake in fish eating populations in the Brazilian amazon. Exp Sci Environ Epidemiol 18:76–87

    Article  CAS  Google Scholar 

  50. Stringari J, Meotti FC, Souza DO, Santos AR, Farina M (2006) Postnatal methylmercury exposure induces hyperlocomotor activity and cerebellar oxidative stress in mice. Dependence on the neurodevelopmental period. Neurochem Res 4:563–569

    Article  Google Scholar 

  51. Sarafian TA, Bredesen DE, Verity MA (1996) Cellular resistance to methylmercury. Neurotoxicology 17(1):27–36

    CAS  PubMed  Google Scholar 

  52. Gul M, Kutay FZ, Temocin S, Hanninen O (2000) Cellular and clinical implications of glutathione. Indian J Exp Biol 38:625–634

    CAS  PubMed  Google Scholar 

  53. Lash LH, Zalups RK (1996) Alterations in renal cellular glutathione metabolism after in vivo administration of a subtoxic dose of mercuric chloride. J Biochem Toxicol 11:1–9

    Article  CAS  PubMed  Google Scholar 

  54. Farina M, Franco JL, Ribas CM, Meotti FC, Missau FC, Pizzolatti MG, Dafre AL, Santos AR (2005) Protective effects of Polygala paniculata extract against methylmercury-induced neurotoxicity in mice. J Pharm Pharmacol 57:1503–1508

    Article  CAS  PubMed  Google Scholar 

  55. Mori N, Yasutake A, Hirayama K (2007) Comparative study of activities in reactive oxygen species production/defense system in mitochondria of rat brain and liver, and their susceptibility to methylmercury toxicity. Arch Toxicol 81(11):769–776

    Article  CAS  PubMed  Google Scholar 

  56. Eto K, Yasutake A, Miyamoto K, Tokunaga H, Otsuka Y (1997) Chronic effects of methylmercury in rats. II. Pathological Aaspects. Tohoku J Exp Med 182:197–120

    Article  CAS  PubMed  Google Scholar 

  57. Eto K, Tokunaga H, Nagashima K, Takeuchi T (2002) An autopsy case of Minamata disease (methylmercury poisoning)—pathological viewpoints of peripheral nerves. Toxicol Pathol 30:714–722

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by Department of Medical Biochemistry, DR.ALMPGIBMS, University of Madras, Taramani Campus, Chennai 113, Tamil Nadu, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thangarajan Sumathi.

Ethics declarations

Conflict of Interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sumathi, T., Christinal, J. Neuroprotective Effect of Portulaca oleraceae Ethanolic Extract Ameliorates Methylmercury Induced Cognitive Dysfunction and Oxidative Stress in Cerebellum and Cortex of Rat Brain. Biol Trace Elem Res 172, 155–165 (2016). https://doi.org/10.1007/s12011-015-0546-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0546-6

Keywords

Navigation