Skip to main content
Log in

Inhibitory effect of α-tocopherol on methylmercury-induced oxidative steress

  • Original Article
  • Published:
Environmental Health and Preventive Medicine Aims and scope

Abstract

Objectives

The present study investigated the involvement of oxidative stress in the degeneration of the cerebellum during methylmercury (MeHg) intoxication and the protective effect of α-tocopherol (Vit E) against MeHg toxicity.

Methods

After 5 mg/kg of MeHg was administered to Wistar rats for 12 consecutive days, the cerebellum were examined histopathologically. In addition, the same amount of MeHg was administered to 3 different groups of Wistar rats: rats with a Vit E-deficient diet, rats fed 150 mg/kg of Vit E for 20 consecutive days after initial MeHg administration, and rats with an ordinary diet.

Results

Positive immunoreactivity against anti-hydroxynonenal (HNE), a marker of lipid peroxidation, was observed in the cerebellum after MeHg administration. Levels of thiobarbituric acid reactive substance (TBARS), another marker of lipid peroxidation, and those of protein carbonyl, a biomarker for protein oxidation, increased after MeHg administration. In the rats with MeHg and a Vit E-deficient diet, mortality and prevalence of piloerection significantly increased, and in the rats with MeHg and Vit E, mortality, piloerection, retracted and crossed hind leg, and ataxic gait significantly decreased, compared with the rats with MeHg alone. The levels of NO2 and NO3 in the serum significantly increased in the rats with MeHg alone 14 days after the initial MeHg administration, but were significantly suppressed by Vit E administration.

Conclusions

Oxidative stress, especially lipid peroxidation, may play an important role in the cerebellar degeneration process during MeHg intoxication and Vit E may play a protective role against MeHg toxicity as an effective antioxidant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hunter D Bomford RR, Russell DS. Poisoning by methyl mercury compounds. Quart. J. Med. 1940; 9: 193–213.

    CAS  Google Scholar 

  2. Hunter D, Russell DS. Focal cerebral and cerebellar atrophy in a human subject due to orgnanic mercury compounds. J. Neurol. Neurosurg. Psychiat. 1954; 17: 235–241.

    Article  PubMed  CAS  Google Scholar 

  3. Takeuchi T. Pathology of Minamata disease. In Study Group of Minamata disease, Kumamoto University (ed. Kutsuna, M.) Shuhan Publisher, Tokyo, Japan. 1968. pp. 141–228.

    Google Scholar 

  4. Takeuchi T. Pathology of Minamata disease. With special reference to its pathogenesis. Acta. Pathol. Jpn., 1982; 32: Suppl 1: 73–99.

    PubMed  Google Scholar 

  5. Nagashima KA. Review of experimental methylmercury toxicity in rats: neuropathology and evidence for apoptosis. Toxicol. Pathol. 1997; 25: 624–631.

    Article  PubMed  CAS  Google Scholar 

  6. Rosen DR. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993; 364: 362.

    PubMed  CAS  Google Scholar 

  7. Yamashita T, Ando Y, Obayashi K, Terazaki H, Sakashita N, Uchida K, Ohama E, Ando M, Uchino M. Oxidative injury is present in Purkinje cells in patients with olivopontocerebellar atrophy. J. Neurol. Sci. 2000; 175: 107–110.

    Article  PubMed  CAS  Google Scholar 

  8. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. USA 1990; 87: 1620–1624.

    Article  PubMed  CAS  Google Scholar 

  9. Yamashita T, Ando Y, Sakashita N, Hirayama K, Tanaka Y, Tashima K, Uchino M, Ando M. Role of nitric oxide in the cerebellar degeneration during methylmercury intoxication. Biochim. Biophys. Acta. 1997; 1334: 303–311.

    PubMed  CAS  Google Scholar 

  10. Ikeda M, Komachi H, Sato I, Himi T, Yuasa T, Murota S. Induction of neuronal nitric oxide synthase by methylmercury in the cerebellum. J. Neurosci. Res. 1999; 55: 352–356.

    Article  PubMed  CAS  Google Scholar 

  11. Shinyashiki M, Kumagai Y, Nakajima H, Nagafune J, Homma-Takeda S, Sagai M, Shimojo, N. Differential changes in rat brain nitric oxide synthase in vivo and in vitro by methylmercury. Brain. Res. 1998; 798: 147–155.

    Article  PubMed  CAS  Google Scholar 

  12. Miura N, Kaneko S, Hosoya S, Furuchi T, Miura K, Kuge S, Naganuma A. Overexpression of L-glutamine: D-fructose-6-phosphate amidotransferase provides resistance to methylmercury in Saccharomyces cerevisiae. FEBS Lett. 1999; 458: 215–218.

    Article  PubMed  CAS  Google Scholar 

  13. Lucesoli F. Oxidative stress in testes of rats subjected to chronic iron intoxication and alpha-tocopherol supplementation. Toxicology 1999; 15: 179–186.

    Article  Google Scholar 

  14. Travacio M, Polo JM, Llesuy S. Chromium (VI) induces oxidative stress in the mouse brain. Toxicology 2000; 162: 139–148.

    Article  Google Scholar 

  15. Usuki F, Yasutake A, Umehara F, Tokunaga H, Matsumoto M, Eto K, Ishiura s, Higuchi I. In vivo protection of a watersoluble derivative of vitamin E, Trolox, against methylmercury-intoxication in the rat. Neurosci. Lett. 2001; 304: 199–203.

    Article  PubMed  CAS  Google Scholar 

  16. Goti D, Hammer A, Galla HJ, Malle E, Sattler W. Uptake of lipoprotein-associated alpha-tocopherol by primary porcine brain capillary endothelial cells. J. Neurochem. 2000; 74: 1374–1783.

    Article  PubMed  CAS  Google Scholar 

  17. Uchida K, Itakura K, Kawakishi S, Hiai H, Toyokuni S, Stadtman ER. Characterization of epitopes recognized by 4-hydroxy-2-nonenal specific antibodies. Arch. Biochem. Biophys. 1995; 324: 241–248.

    Article  PubMed  CAS  Google Scholar 

  18. Yoritaka A, Hattori N, Uchida K, Tanaka M, Stadtman ER, Mizuno Y. Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc. Natl. Acad. Sci. USA 1996; 93: 2696–2701.

    Article  PubMed  CAS  Google Scholar 

  19. Castellani RJ, Perry G, Siedlak SL, Nunomura A, Shimohama S, Zhang J, Montine T, Sayre LM, Smith MA. Hydroxynonenal adducts indicate a role for lipid peroxidation in neocortical and brainstem Lewy bodies in humans. Neurosci Lett. 2002; 319: 25–28.

    Article  PubMed  CAS  Google Scholar 

  20. Toyokuni S, Uchida K, Okamoto K, Hattori NY, Hiai H, Stadtman ER. Formation of 4-hydroxy-2-nonenal-modified proteins in the renal proximal tubules of rats treated with a renal carcinogen, ferric nitrilotriacetate. Proc. Natl. Acad. Sci. USA 1994; 91: 2616–2620.

    Article  PubMed  CAS  Google Scholar 

  21. Buege JA, Aust SD. Microsomal lipid peroxidation. Methods. Enzymol. 1978; 52: 302–310.

    Article  PubMed  CAS  Google Scholar 

  22. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER. Determination of carbonyl content in oxidatively modified proteins. Methods. Enzymol. 1990; 186: 464–478.

    Article  PubMed  CAS  Google Scholar 

  23. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [5N] nitrate in biological fluids. Anal. Biochem. 1982; 126: 131–138.

    Article  PubMed  CAS  Google Scholar 

  24. Albery WJ, Boutelle MG, Galley PT. The dialysis electrode—a new method for in vivo monitoring. J. Chem. Soc. Chem. Commun. 1992; 900–901.

  25. Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free. Rad. Biol. Med. 1991; 11: 81–128.

    Article  PubMed  CAS  Google Scholar 

  26. Benedetti A, Comporti M, Esterbauer H. Identification of 4-hydroxynonenal as a cytotoxic product originating from the peroxidation of liver microsomal lipids. Biochim. Biophys. Acta. 1980; 620: 281–296.

    PubMed  CAS  Google Scholar 

  27. Ando Y, Nyhlin, N, Suhr O, Holmgren G, Uchida K, Sahly MEL, Yamashita T, Terasaki H, Nakamura M, Uchino M, Ando M. Oxidative stress is found in amyloid deposits in systemic amyloidosis. Biochem. Biophys. Res. Commum. 1997; 232: 497–502.

    Article  CAS  Google Scholar 

  28. Coombes JS, Powers SK, Demirel HA, Hamilton KL, Jessup J, Vincent HK. Shanely RAVitamin E deficiency fails to affect myocardial performance during in vivo ischemia-reperfusion. Int. J. Vitam. Nutr. Res. 2000; 70: 293–300.

    Article  PubMed  CAS  Google Scholar 

  29. Sano M, Ernesto C, Thomas RG, Klauber MR, Schafer K, Grundman M, Woodbury P, Growdon J, Cotman CW, Pfeiffer E, Schneider LS, Thal LJ. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. The Alzheimer’s Disease Cooperative Study. N. Engl. J. Med. 1997; 336: 1216–1222.

    Article  PubMed  CAS  Google Scholar 

  30. Grundman M. Vitamin E and Alzheimer disease: the basis for additional clinical trials. Am. J. Clin. Nutr. 2000; 71: 630S-636S.

    PubMed  CAS  Google Scholar 

  31. Patra RC, Swarup D, Dwivedi SK. Antioxidant effects of alpha tocopherol, ascorbic acid and L-methionine on lead induced oxidative stress to the liver, kidney and brain in rats. Toxicology 2001; 162: 81–88.

    Article  PubMed  CAS  Google Scholar 

  32. Dawson VL, Dawson TM, London ED, Bredt DS, Snyder SH. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc. Natl. Acad. Sci. USA 1991; 88: 6368–6371.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukio Ando.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamashita, T., Ando, Y., Nakamura, M. et al. Inhibitory effect of α-tocopherol on methylmercury-induced oxidative steress. Environ Health Prev Med 9, 111–117 (2004). https://doi.org/10.1007/BF02898069

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02898069

Key words

Navigation