Skip to main content
Log in

Neurological Toxicity of Individual and Mixtures of Low Dose Arsenic, Mono and Di (n-butyl) Phthalates on Sub-Chronic Exposure to Mice

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate the toxicity of individual and mixtures of di(n-butyl) phthalates (DBP) and their active metabolite monobutyl phthalate (MBP) and arsenic (As) on spatial cognition associated with hippocampal apoptosis in mice. Mice were exposed, individually or in combination, to DBP (50 mg/kg body weight, intragastrically), MBP (50 mg/kg body weight, intragastrically), and As (10 mg/L, per os) for 8 weeks. The Morris water maze test showed that mice exposed to DBP/MBP combined with As exhibited longer escape latencies and the lower average number of crossing the platform. The As content in the hippocampus after As exposure increased as compared to those without As exposure. In mice exposed to DBP/MBP combined with As, pathological alterations and oxidative damage to the hippocampus were found. Expression of apoptosis-related protein: Bax and caspase-3 were significantly increased in the hippocampus, while there was no significant change in expression of Bcl-2. The results suggested that DBP and MBP combined with As can induce spatial cognitive deficits through altering the expression of apoptosis-related protein and As played a critical role in cognition impairments. And the joint exposure has antagonistic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abernathy CO, Liu YP, Longfellow D, Aposhian HV, Beck B, Fowler B, Goyer R, Menzer R, Rossman T, Thompson C (1999) As: health effects, mechanisms of actions, and research issues. Environ Health Perspect 107:593–597

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Rodriguez VM, Jimenez-Capdeville ME, Giordano M (2003) The effects of arsenic exposure on the nervous system. Toxicol Lett 145:1–18

    Article  CAS  PubMed  Google Scholar 

  3. Duker AA, Carranza EJM, Hale M (2005) Arsenic geochemistry and health. Environ Int 31:631–641

    Article  CAS  PubMed  Google Scholar 

  4. Tsai SY, Chou HY, The HW, Chen CM, Chen CJ (2003) The effects of chronic arsenic exposure from drinking water on the neurobehavioral development in adolescence. Neurotoxicology 24:747–753

    Article  CAS  PubMed  Google Scholar 

  5. Wasserman GA, Liu X, Parvez F, Ahsan H, Factor-Litvak P, van Geen A, Slavkovich V, Lolacono NJ, Cheng Z, Hussain I (2004) Water arsenic exposure and children’s intellectual function in Araihazar, Bangladesh. Environ Health Perspect 112:1329–1333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Wright RO, Amarasiriwardena C, Woolf AD, Jim R, Bellinger DC (2006) Neuropsychological correlates of hair arsenic, manganese, and cadmium levels in school-age children residing near a hazardous waste site. NeuroToxicology 27:210–216

    Article  CAS  PubMed  Google Scholar 

  7. Hamadani JD, Tofail F, Nermell B, Gardner R, Shiraji S, Bottai M, Arifeen SE, Huda SN, Vahter M (2011) Critical windows of exposure for arsenic-associated impairment of cognitive function in pre-school girls and boys: a population-based cohort study. Int J Epidemiol 40:1593–1604

    Article  CAS  PubMed  Google Scholar 

  8. Jin Y, Xi S, Li X, Lu C, Li G, Xu Y, Qu C, Niu Y, Sun G (2006) Arsenic speciation transported through the placenta from mother mice to their newborn pups. Environ Res 101:349–355

    Article  CAS  PubMed  Google Scholar 

  9. Xi S, Sun W, Wang F, Jin Y, Sun G (2009) Transplacental and early life exposure to inorganic arsenic affected development and behavior in offspring rats. Arch Toxicol 83:549–556

    Article  CAS  PubMed  Google Scholar 

  10. Mikula P, Svobodova Z, Smutna M (2005) Phthalates: toxicology and food safety—a review. Czech J Food Sci 23:217–223

    CAS  Google Scholar 

  11. Koch HM, Drexler H, Angerer J (2003) An estimation of the daily intake of di(2-ethylhexyl)phthalate (DEHP) and other phthalates in the general population. Int J Hyg Environ Health 206:77–83

    Article  CAS  PubMed  Google Scholar 

  12. O’Connor JC, Frame SR, Ladics GS (2002) Evaluation of a 15-day screening assay using intact male rats for identifying antiandrogens. Toxicol Sci 69:92–108

    Article  PubMed  Google Scholar 

  13. Shultz VD, Phillips S, Sar M, Foster PMD, Gaido KW (2001) Altered gene profiles in fetal rat testes after in utero exposure to di(n-butyl) phthalate. Toxicol Sci 64:233–242

    Article  CAS  PubMed  Google Scholar 

  14. Li X, Jiang L, Cheng L, Chen H (2014) Dibutyl phthalate-induced neurotoxicity in the brain of immature and mature rat offspring. Brain and Development 36:653–660

    Article  PubMed  Google Scholar 

  15. Shen O, Du G, Sun H, Wu W, Jiang Y, Song L, Wang X (2009) Comparison of in vitro hormone activities of selected phthalates using reporter gene assays. Toxicol Lett 191:9–14

    Article  CAS  PubMed  Google Scholar 

  16. Weiss B (2011) Endocrine disruptors as a threat to neurological function. J Neurol Sci 305:11–21

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Tanaka A, Matsumoto A, Yamaha T (1978) Biochemical studies on phthalic esters. III. Metabolism of dibutyl phthalate (DBP) in animals. Toxicology 9:109–123

    Article  CAS  PubMed  Google Scholar 

  18. Hallmark N, Walker M, McKinnell C, Mahood IK, Scott H, Bayne R, Coutts S, Anderson RA, Greig I, Morris K, Sharpe RM (2007) Effects of monobutyl and di(n-butyl) phthalate in vitro on steroidogenesis and Leydig cell aggregation in fetal testis explants from the rat: comparison with effects in vivo in the fetal rat and neonatal marmoset and in vitro in the human. Environ Health Perspect 115:390–396

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Suk WA, Olden K, Yang RSH (2002) Chemical mixtures research: significance and future perspectives. Environ Health Perspect 110:891–892

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Chen XM, An H, Ao L, Sun L, Liu WB, Zhou ZY, Wang YX, Cao J (2011) The combined toxicity of dibutyl phthalate and benzo(a)pyrene on the reproductive system of male Sprague Dawley rats in vivo. J Hazard Mater 186:835–841

    Article  CAS  PubMed  Google Scholar 

  21. Prasanth GK, Divya LM, Sadasivan C (2009) Effects of mono and di(n-butyl) phthalate on superoxide dismutase. Toxicology 262:38–42

    Article  CAS  PubMed  Google Scholar 

  22. Xu H, Shao X, Zhang Z, Zou Y, Chen Y, Han S, Wang S, Wu X, Yang L, Chen Z (2013) Effects of Di-n-butyl phthalate and diethyl phthalate on acetylcholinesterase activity and neurotoxicity related gene expression in embryonic zebrafish. Bull Environ Contam Toxicol 91:635–639

    Article  CAS  PubMed  Google Scholar 

  23. Chen X, Zhou QH, Leng L, Chen X, Sun ZR, Tang NJ (2013) Effects of di(n-butyl) and monobutyl phthalate on steroidogenesis pathways in the murine Leydig tumor cell line MLTC-1. Environ Toxicol Pharmacol 36:332–338

    Article  CAS  PubMed  Google Scholar 

  24. Roth KA (2001) Caspases, apoptosis, and Alzheimer disease: causation, correlation, and confusion. J Neuropathol Exp Neurol 60:829–838

    Article  CAS  PubMed  Google Scholar 

  25. Andersen JK (2001) Does neuronal loss in Parkinson’s disease involve programmed cell death? Bioessays 23:640–646

    Article  CAS  PubMed  Google Scholar 

  26. Lu K, Abo RP, Schlieper KA, Graffam ME, Levine S, Wishnok JS, Swenberg JA, Tannenbaum SR, Fox JG (2014) Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environ Health Perspect 122:284–291

    PubMed Central  PubMed  Google Scholar 

  27. Mylchreest E, Wallace DG, Cattley RC, Foster PMD (2000) Dose-dependent alterations in androgen-regulated male reproductive development in rats exposed to di(n-butyl) phthalate during late gestation. Toxicol Sci 55:143–151

    Article  CAS  PubMed  Google Scholar 

  28. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in rat. J Neurosci Methods 11:47–60

    Article  CAS  PubMed  Google Scholar 

  29. Habibi E, Ghanemi K, Fallah-Mehrjardi M, Dadolahi-Sohrab A (2013) A novel digestion method based on a choline chloride-oxalic acid deep eutectic solvent for determining Cu, Fe, and Zn in fish samples. Anal Chim Acta 762:61–67

    Article  CAS  PubMed  Google Scholar 

  30. D’Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Rev 36:60–90

    Article  PubMed  Google Scholar 

  31. Lever C, Wills T, Cacucci F, Burgess N, O’Keefe J (2002) Long-term plasticity in hippocampal place-cell representation of environmental geometry. Nature 416:90–94

    Article  CAS  PubMed  Google Scholar 

  32. Tracy AL, Jarrard LE, Davidson TL (2001) The hippocampus and motivation revisited: appetite and activity. Behav Brain Res 127:13–23

    Article  CAS  PubMed  Google Scholar 

  33. Leib SL, Heimgartner C, Bifrare YD, Loeffler JM, Tauber MG (2003) Dexamethasone aggravates hippocampal apoptosis and learning deficiency in pneumococcal meningitis in infant rats. Pediatr Res 54:353–357

    Article  CAS  PubMed  Google Scholar 

  34. Magliozzi R, Howell OW, Reeves C, Roncaroli F, Nicholas R, Serafini B, Aloisi F, Reynolds R (2010) A gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Ann Neurol 68:477–493

    Article  CAS  PubMed  Google Scholar 

  35. Nakazawa K, Quirk MC, Chitwood RA, Watanabe M, Yeckel MF, Sun LD, Kato A, Carr CA, Johnston D, Wilson MA, Tonegawa S (2002) Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science 297:211–218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Clark RS, Kochanek PM, Chen M, Watkins SC, Marion DW, Chen J, Hamilton RL, Loeffert JE, Graham SH (1999) Increases in Bcl-2 and cleavage of caspase-1 and caspase-3 in human brain after head injury. FASEB J 13:813–821

    CAS  PubMed  Google Scholar 

  37. Li ZG, Zhang WX, Grunberger G, Sima AAF (2002) Hippocampal neuronal apoptosis in type 1 diabetes. Brain Res 946:221–231

    Article  CAS  PubMed  Google Scholar 

  38. Swanton E, Savory P, Cosulich S, Clarke P, Woodman P (1999) Bcl-2 regulates a caspase-3/caspase-2 apoptotic cascade in cytosolic extracts. Oncogene 18:1781–1787

    Article  CAS  PubMed  Google Scholar 

  39. Lossi L, Cantile C, Tamagno I, Merighi A (2005) Apoptosis in the mammalian CNS: lessons from animal models. Vet J 170:52–66

    Article  CAS  PubMed  Google Scholar 

  40. Del Razo LM, Quintanilla-Vega B, Brambila-Colombres E, Calderon-Aranda ES, Manno M, Albores A (2001) Stress proteins induced by arsenic. Toxicol Appl Pharmacol 177:132–148

    Article  PubMed  Google Scholar 

  41. Luna AL, Acosta-Saavedra LC, Lopez-Carrillo L, Conde P, Vera E, De Vizcaya-Ruiz A, Bastida M, Cebrian ME, Calderon-Aranda ES (2010) Arsenic alters monocyte superoxide anion and nitric oxide production in environmentally exposed children. Toxicol Appl Pharmacol 245:244–251

    Article  CAS  PubMed  Google Scholar 

  42. Larochette N, Decaudin D, Jacotot E, Brenner C, Marzo I, Susin SA, Zamzami N, Xie Z, Reed J, Kroemer G (1999) Arsenite induces apoptosis via a direct effect on the mitochondrial permeability transition pore. Exp Cell Res 249:413–421

    Article  CAS  PubMed  Google Scholar 

  43. Banerjee N, Banerjee M, Ganguly S, Bandyopadhyay S, Das JK, Bandyopadhay A, Chatterjee M, Giri AK (2008) Arsenic-induced mitochondrial instability leading to programmed cell death in the exposed individuals. Toxicology 246:101–111

    Article  CAS  PubMed  Google Scholar 

  44. Wang Y, Song L, Chen J, He J, Liu R, Zhu Z, Wang X (2004) Effects of di-butyl phthalate on sperm motility and oxidative stress in rats. Natl J Androl 10:253–256

    Google Scholar 

  45. Nagaraja T, Desiraju T (1994) Effects on operant learning and brain acetylcholine esterase activity in rats following chronic inorganic arsenic intake. Human Exp Toxicol 13:353–356

    Article  CAS  Google Scholar 

  46. Sarvestani NN, Khodagholi F, Ansari N, Farimani MM (2013) Involvement of p-CREB and phase II detoxifying enzyme system in neuroprotection mediated by the flavonoid calycopterin isolated from Dracocephalum kotschyi. Phytomedicine 20:939–946

    Article  CAS  PubMed  Google Scholar 

  47. Lu TH, Tseng TJ, Su CC, Tang FC, Yen CC, Liu YY, Yang CY, Wu CC, Chen KL, Hung DZ, Chen YW (2014) Arsenic induces reactive oxygen species-caused neuronal cell apoptosis through JNK/ERK-mediated mitochondria-dependent and GRP 78/CHOP-regulated pathways. Toxicol Lett 224:130–140

    Article  CAS  PubMed  Google Scholar 

  48. Xu Z, Wang Z, Li JJ, Chen C, Zhang PC, Dong L, Chen JH, Chen Q, Zhang XT, Wang ZL (2013) Protective effects of selenium on oxidative damage and oxidative stress related gene expression in rat liver under chronic poisoning of arsenic. Food Chem Toxicol 58:1–7

    Article  CAS  PubMed  Google Scholar 

  49. Flora SJS, Bhadauria S, Pant SC, Dhaked RK (2005) Arsenic induced blood and brain oxidative stress and its response to some thiol chelators in rats. Life Sci 77:2324–2337

    Article  CAS  PubMed  Google Scholar 

  50. Lane RM, Kivipelto M, Greig NH (2004) Acetylcholinesterase and its inhibition in Alzheimer disease. Clin Neuropharmacol 27:141–149

    Article  CAS  PubMed  Google Scholar 

  51. Yousef MI, El-Demerdash FM, Radwan FME (2008) Sodium arsenite induced biochemical perturbations in rats: ameliorating effect of curcumin. Food Chem Toxicol 46:3506–3511

    Article  CAS  PubMed  Google Scholar 

  52. Kannan GM, Tripathi N, Dube SN, Gupta M, Flora SJS (2001) Toxic effects of arsenic (III) on some hematopoietic and central nervous system variables in rats and guinea pigs. J Toxicol Clin Toxicol 39:675–682

    Article  CAS  PubMed  Google Scholar 

  53. Flora SJS, Bhatt K, Mehta A (2009) Arsenic moiety in gallium arsenide is responsible for neuronal apoptosis and behavioral alterations in rats. Toxicol Appl Pharmacol 240:236–244

    Article  CAS  PubMed  Google Scholar 

  54. Butterweck V, Böckers T, Korte B, Wittkowski W, Winterhoff H (2002) Long-term effects of St. John’s wort and hypericin on monoamine levels in rat hypothalamus and hippocampus. Brain Res 930:21–29

    Article  CAS  PubMed  Google Scholar 

  55. Chen SM, Swilley S, Bell R, Rajanna S, Reddy SLN, Rajanna B (2000) Lead induced alterations in nitrite and nitrate levels in different regions of the rat brain. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 125:315–323

    Article  CAS  Google Scholar 

  56. Rios R, Zarazúa S, Santoyo M, Sepúlveda-Saavedra J, Romero-Díaz V, Jiménez V, Pérez-Severiano F, Vidal-Cantú G, Delgado J, Jiménez-Capdeville M (2009) Decreased nitric oxide markers and morphological changes in the brain of arsenic-exposed rats. Toxicology 261:68–75

    Article  CAS  PubMed  Google Scholar 

  57. Barchowsky A, Dudek EJ, Treadwell MD, Wetterhahn KE (1996) Arsenic induces oxidant stress and NF-KB activation in cultured aortic endothelial cells. Free Radic Biol Med 21:783–790

    Article  CAS  PubMed  Google Scholar 

  58. Chattopadhyay S, Bhaumik S, Nag Chaudhury A, Das Gupta S (2002) Arsenic induced changes in growth development and apoptosis in neonatal and adult brain cells in vivo and in tissue culture. Toxicol Lett 128:73–84

    Article  CAS  PubMed  Google Scholar 

  59. Antunes F, Nunes C, Laranjinha J, Cadenas E (2005) Redox interactions of nitric oxide with dopamine and its derivatives. Toxicology 208:207–212

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the Priority Academic Program Development of Jiangsu Higher Education Institutions, Collaborative Innovation Center of Technology and Material of Water Treatment, Specialized Research Fund for the Doctoral Program of Chinese Universities from the Ministry of Education (20113227110020).

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liuqing Yang or Xiangyang Wu.

Additional information

Guanghua Mao and Zhaoxiang Zhou co-first authors.

Guanghua Mao and Zhaoxiang Zhou contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, G., Zhou, Z., Chen, Y. et al. Neurological Toxicity of Individual and Mixtures of Low Dose Arsenic, Mono and Di (n-butyl) Phthalates on Sub-Chronic Exposure to Mice. Biol Trace Elem Res 170, 183–193 (2016). https://doi.org/10.1007/s12011-015-0457-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0457-6

Keywords

Navigation