Skip to main content

Effect of Selenium Deficiency on Phosphorylation of the AMPK Pathway in Rats

Abstract

Selenium is an important trace element for human health. Previous studies have raised concern that dietary selenium intake may change energy metabolism. AMP-activated protein kinase (AMPK) is a sensor of energy status that controls cellular energy homeostasis. We aimed to determine the effect of selenium on the phosphorylation of AMPK pathway between Se-deficient and normal Sprague–Dawley rats. Twenty-four weaning rats were fed either a Se-deficient diet (0.02 mg Se/kg) or a standard diet (0.18 mg Se/kg). After 109 days, total serum levels of non-esterified fatty acid and total amino acids were significantly higher and the serum insulin concentration was significantly lower in Se-deficient rats than in healthy controls. Selenium concentration and the activity of glutathione peroxidase (GPx) in myocardial tissue were significantly lower in Se-deficient rats. Importantly, mRNA levels of acetyl-CoA carboxylase beta (ACACB), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and protein levels of p-AMPKα were increased in the Se-deficient group compared to normal controls (p < 0.05). In conclusion, our results suggest that selenium deficiency induces changes in metabolic and molecular parameters involved in energy metabolism in the AMPK pathway.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Fairweather-Tait SJ, Bao Y, Broadley MR, Collings R, Ford D, Hesketh JE, Hurst R (2011) Selenium in human health and disease. Antioxid Redox Signal 14:1337–1383

    PubMed  CAS  Article  Google Scholar 

  2. Tong WM, Wang F (1998) Alterations in rat pancreatic islet beta cells induced by Keshan disease pathogenic factors: protective action of selenium and vitamin E. Metabolism 47:415–419

    PubMed  CAS  Article  Google Scholar 

  3. Yang Z, Xie Y, Chen J, Zhang D, Yang C, Li M (2010) High selenium may be a risk factor of adolescent idiopathic scoliosis. Med Hypotheses 75:126–127

    PubMed  CAS  Article  Google Scholar 

  4. Vinceti M, Maraldi T, Bergomi M, Malagoli C (2009) Risk of chronic low-dose selenium overexposure in humans: insights from epidemiology and biochemistry. Rev Environ Health 24:231–248

    PubMed  CAS  Article  Google Scholar 

  5. Battin EE, Brumaghim JL (2009) Antioxidant activity of sulfur and selenium: a review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms. Cell Biochem Biophys 55:1–23

    PubMed  CAS  Article  Google Scholar 

  6. Tapiero H, Townsend DM, Tew KD (2003) The antioxidant role of selenium and seleno-compounds. Biomed Pharmacother 57:134–144

    PubMed  CAS  Article  Google Scholar 

  7. Hawkes WC, Keim NL (2003) Dietary selenium intake modulates thyroid hormone and energy metabolism in men. J Nutr 133:3443–3448

    PubMed  CAS  Google Scholar 

  8. Kim AS, Miller EJ, Wright TM, Li J, Qi D, Atsina K (2011) A small molecule AMPK activator protects the heart against ischemia-reperfusion injury. J Mol Cell Cardiol 51:24–32

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  9. Sunde RA (2010) mRNA transcripts as molecular biomarkers in medicine and nutrition. J Nutr Biochem 21:665–670

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  10. Steinbrenner H (2013) Interference of selenium and selenoproteins with the insulin-regulated carbohydrate and lipid metabolism. Free Radic Biol Med 65:1538–1547

    PubMed  CAS  Article  Google Scholar 

  11. Misu H, Takamura T, Takayama H, et al (2010) A liver-derived secretory protein, selenoprotein P, causes insulin resistance. Cell Metab 12:483–495

    PubMed  CAS  Article  Google Scholar 

  12. Uthus EO, Ross SA (2007) Dietary selenium affects homocysteine metabolism differently in Fisher-344 rats and CD-1 mice. J Nutr 137:1132–1136

    PubMed  CAS  Google Scholar 

  13. Zhu Z, Kimura M, Itokawa Y (1993) Mineral status in selenium-deficient rats compared to selenium-sufficient rats fed vitamin-free casein-based or torula yeast-based diet. Biol Trace Elem Res 37:219–231

    PubMed  CAS  Article  Google Scholar 

  14. Reeves PG (1997) Components of the AIN-93 diets as improvements in the AIN-76A diet. J Nutr 127:838S–841S

    PubMed  CAS  Google Scholar 

  15. Reeves PG, Nielsen FH, Fahey GJ (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951

    PubMed  CAS  Google Scholar 

  16. Gu L, Pandey V, Geenen DL, Chowdhury SA, Piano MR (2008) Cigarette smoke-induced left ventricular remodelling is associated with activation of mitogen-activated protein kinases. Eur J Heart Fail 10:1057–1064

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  17. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    PubMed  CAS  Article  Google Scholar 

  18. Alehagen U, Aaseth J (2015) Selenium and coenzyme Q10 interrelationship in cardiovascular diseases—a clinician’s point of view. J Trace Elem Med Biol 31:157–162

    PubMed  CAS  Article  Google Scholar 

  19. Liu WM, Liu ZY, Li GS (1995) The effect of selenium, vitamin E on free fatty acid in plasm and myocardium in rats of myocardial ischemia. Endemic Dis Bull 3:269–273

    Google Scholar 

  20. Jouven X, Charles MA, Desnos M, Ducimetiere P (2001) Circulating nonesterified fatty acid level as a predictive risk factor for sudden death in the population. Circulation 104:756–761

    PubMed  CAS  Article  Google Scholar 

  21. Xiong YM, Guo X, Zhang SY (1994) Plasma protein and amino acid analysis of different hair selenium in Kashin Beck areas. Endemic Dis Bull 4:1–3

    Google Scholar 

  22. Letsiou S, Nomikos T, Panagiotakos DB, Pergantis SA, Fragopoulou E, Pitsavos C, Stefanadis C, Antonopoulou S (2014) Gender-specific distribution of selenium to serum selenoproteins: associations with total selenium levels, age, smoking, body mass index, and physical activity. Biofactors 40:524–535

    PubMed  CAS  Article  Google Scholar 

  23. Hardie DG (2014) AMPK: positive and negative regulation, and its role in whole-body energy homeostasis. Curr Opin Cell Biol 33C:1–7

    Google Scholar 

  24. Kudo N, Barr AJ, Barr RL, Desai S, Lopaschuk GD (1995) High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5′-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J Biol Chem 270:17513–17520

    PubMed  CAS  Article  Google Scholar 

  25. Jager S, Handschin C, St-Pierre J, Spiegelman BM (2007) AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U S A 104:12017–12022

    PubMed  PubMed Central  Article  Google Scholar 

  26. Patten IS, Arany Z (2012) PGC-1 coactivators in the cardiovascular system. Trends Endocrinol Metab 23:90–97

    PubMed  CAS  Article  Google Scholar 

  27. Sasaki T, Nakata R, Inoue H, Shimizu M, Inoue J, Sato R (2014) Role of AMPK and PPARgamma1 in exercise-induced lipoprotein lipase in skeletal muscle. Am J Physiol Endocrinol Metab 306:E1085–E1092

    PubMed  CAS  Article  Google Scholar 

  28. Dillon LM, Rebelo AP, Moraes CT (2012) The role of PGC-1 coactivators in aging skeletal muscle and heart. Iubmb Life 64:231–241

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  29. Pinto A, Juniper DT, Sanil M, Morgan L, Clark L, Sies H, Rayman MP, Steinbrenner H (2012) Supranutritional selenium induces alterations in molecular targets related to energy metabolism in skeletal muscle and visceral adipose tissue of pigs. J Inorg Biochem 114:47–54

    PubMed  CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Scientific Foundation of China (81273008).

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wuhong Tan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, S., Guo, X., Tan, W. et al. Effect of Selenium Deficiency on Phosphorylation of the AMPK Pathway in Rats. Biol Trace Elem Res 169, 254–260 (2016). https://doi.org/10.1007/s12011-015-0427-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0427-z

Keywords

  • Selenium deficiency
  • AMPK pathway
  • Sprague–Dawley rats
  • Energy metabolism