Skip to main content

Advertisement

Log in

Variation in the Levels of Aluminum and Manganese in Scalp Hair Samples of the Patients Having Different Psychiatric Disorders with Related to Healthy Subjects

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

There is very limited information available on the role of trace elements in psychiatric disorders (PSD). Immense pieces of evidence support the idea that exposure to trace and toxic metals, such as aluminum (Al) and manganese (Mn), may be factors or cofactors in the etiopathogenesis of a variety of psychiatric disorders. The aim of our study was to assess the Al and Mn in scalp hair samples of 102 patients having different types of psychiatric disorder PSD diseases together with 120 referent subjects of male patients in the age group of 45–60 years. The understudy elements in scalp hair samples were assessed by the flame atomic absorption spectrophotometry after microwave-assisted acid digestion method .The validity of methodology was checked by the certified human hair reference material (NCS ZC81002). The recovery of studied elements was found in the range of 98.1–99.2 % of certified reference material. The results of this study showed that the mean values of Al and Mn were significantly higher in scalp hair samples of all types of PSD as compared to referents subjects. The resulted data indicated a significant increase in the contents of Mn and Al in scalp hair samples of psychiatric patients than that of its control counterpart, which may provide prognostic tool for the diagnosis of the mental disorders. However, further work is suggested to examine the exact correlation between trace elements level and the degree of disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hansen MS, Fink P et al (2005) Mental illness and health care use: a study among new neurological patients. Gen Hosp Psychiatry 27:119–124

    Article  PubMed  Google Scholar 

  2. Owiredu W, Osei O, et al (2012) Prevalence of metabolic syndrome among Psychiatric Patients in the Kumasi Metropolis, Ghana. J Med Biomed Sci 1:38–49

  3. Turkson S, Asamoah V (1999) Body dysmorphic disorder in a Ghanaian male: case report. East Afr Med J 76:111–114

    CAS  PubMed  Google Scholar 

  4. Barnham KJ, Bush AI (2008) Metals in Alzheimer’s and Parkinson’s diseases. Curr Opin Chem Biol 12:222–228

    Article  CAS  PubMed  Google Scholar 

  5. Bush AI (2000) Metals and neuroscience. Curr Opin Chem Biol 4:184–191

    Article  CAS  PubMed  Google Scholar 

  6. Calne D, Chu N et al (1994) Manganism and idiopathic parkinsonism: similarities and differences. Neurology 44:1583–1586

    Article  CAS  PubMed  Google Scholar 

  7. Erikson KM, Syversen T et al (2005) Interactions between excessive Mn exposures and dietary iron-deficiency in neurodegeneration. Environ Toxicol Pharmacol 19:415–421

    Article  CAS  PubMed  Google Scholar 

  8. Pal PK, Samii A et al (1998) Manganese neurotoxicity: a review of clinical features, imaging and pathology. Neurotoxicology 20:227–238

    Google Scholar 

  9. Bowman AB, Kwakye GF et al (2011) Role of manganese in neurodegenerative diseases. J Trace Elem Med Biol 25:191–203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Josephs K, Ahlskog J et al (2005) Neurologic manifestations in welders with pallidal MRI T1 hyperintensity. Neurology 64:2033–2039

    Article  CAS  PubMed  Google Scholar 

  11. Schneider JS, Decamp E et al (2006) Effects of chronic manganese exposure on cognitive and motor functioning in non-human primates. Brain Res 1118:222–231

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Yokel RA (2006) Blood–brain barrier flux of Al, manganese, iron and other metals suspected to contribute to metal-induced neurodegeneration. J Alzheim Dis 10:223–253

    Google Scholar 

  13. Aschner M, Erikson KM et al (2005) Manganese dosimetry: species differences and implications for neurotoxicity. CRC Crit Rev Toxicol 35:1–32

    Article  CAS  Google Scholar 

  14. Racette BA, McGee-Minnich L et al (2001) Welding-related parkinsonism Clinical features, treatment, and pathophysiology. Neurology 56:8–13

    Article  CAS  PubMed  Google Scholar 

  15. Roels H, Ghyselen P et al (1992) Assessment of the permissible exposure level to manganese in workers exposed to manganese dioxide dust. Br J Ind Med 49:25–34

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Bowler RM, Gysens S et al (2006) Manganese exposure: neuropsychological and neurological symptoms and effects in welders. Neurotoxicology 27:315–326

    Article  CAS  PubMed  Google Scholar 

  17. Roels H, Ortega EM et al (1998) Prospective study on the reversibility of neurobehavioral effects in workers exposed to manganese dioxide. Neurotoxicology 20:255–271

    Google Scholar 

  18. Bondy SC (2010) The neurotoxicity of environmental aluminum is still an issue. Neurotoxicology 31:575–581

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. IPCS.No. 194 .Gene‘ve: WHO (1997) Environmental health criteria for aluminium. Effects Hum 138–156

  20. Klein GL (2005) Aluminum: new recognition of an old problem. Curr Opin Pharmacol 5:637–640

    Article  CAS  PubMed  Google Scholar 

  21. Kochian L, Jones D (1997) Aluminum toxicity and resistance in plants. In: Yokel RA, Golub MS (eds) Research issues in Aluminium toxicity. Taylor and Francis Publishers, Bristol

    Google Scholar 

  22. Yumoto S, Nagai H et al (2001) Aluminium incorporation into the brain of rat fetuses and sucklings. Brain Res Bull 55:229–234

    Article  CAS  PubMed  Google Scholar 

  23. Murray JC, Tanner CM et al (1991) Aluminum neurotoxicity: a reevaluation. Clin Neuropharmacol 14:179–185

    Article  CAS  PubMed  Google Scholar 

  24. Erasmus RT, Savory J et al (1993) Aluminum neurotoxicity in experimental animals. Ther Drug Monit 15:588–592

    Article  CAS  PubMed  Google Scholar 

  25. Winship KA (1993) Toxicity of aluminium: a historical review, Part 2. Adverse Drug React Toxical Rev 12:177–211

    CAS  Google Scholar 

  26. Afridi HI, Kazi TG et al (2008) Evaluation of status of toxic metals in biological samples of diabetes mellitus patients. Diabetes Res Clin Pract 80:280–288

    Article  CAS  PubMed  Google Scholar 

  27. Saraymen R, Soylak M, Narin I (1998) Serum cadmium levels of people living in Kayseri-Belsin Region-Turkiye. Fresenius Environ Bull 7:403–405

    CAS  Google Scholar 

  28. Smith FE, Arsenault EA (1996) Microwave-assisted sample preparation in analytical chemistry. Talanta 43:1207–1268

    Article  CAS  PubMed  Google Scholar 

  29. Afridi HI, Kazi TG et al (2006) Essential trace and toxic element distribution in the scalp hair of Pakistani myocardial infarction patients and controls. Biol Trace Elem Res 113:19–34

    Article  CAS  PubMed  Google Scholar 

  30. Tuzen M, Soylak M (2008) Biosorption of aluminum on Pseudomonas aeruginosa loaded on Chromosorb 106 prior to its graphite furnace atomic absorption spectrometric determination. Orig Res Artic J Hazard Mater 154:519–525

    Article  CAS  Google Scholar 

  31. Afridi HI, Kazi TG et al (2006) Analysis of heavy metals in scalp hair samples of hypertensive patients by conventional and microwave digestion methods. Spectrosc Lett 39:203–214

    Article  CAS  Google Scholar 

  32. Arain SA, Afridi HI et al (2013) Investigation of alteration in the levels of iron and copper in scalp hair samples of patients having different types of viral hepatitis. Biol Trace Elem Res 156:5–11

    Article  CAS  Google Scholar 

  33. Moore PB, Day JP et al (1999) Absorption of aluminium-26 in Alzheimer’s disease, measured using accelerator mass spectrometry. Dement Geriatr Cogn Disord 11:66–69

    Article  Google Scholar 

  34. Whitehead M, Farrar G et al (1997) Mechanisms of aluminum absorption in rats. Am J Clin Nutr 65:1446–1452

    CAS  PubMed  Google Scholar 

  35. Banks WA, Banks A, Zatta P (1995) The blood–brain barrier in aluminum toxicity and Alzheimer’s disease. In: Zatta P, Nicolini M (eds) Non-neuronal Cells in Alzheimer’s Disease. World Scientific, Singapore, pp 1–12

    Chapter  Google Scholar 

  36. Candura SM, Manzo L, et al (1998) Role of occupational neurotoxicants in psychiatric and neurodegenerative disorders. In: Costa LG, Manzo L (eds). 131–167

  37. Favarato M, Zatta P et al (1992) Aluminum (III) influences the permeability of the blood–brain barrier to [14 C] sucrose in rats. Brain Res 569:330–335

    Article  CAS  PubMed  Google Scholar 

  38. Meco G, Bonifati V, et al (1994) Parkinsonism after chronic exposure to the fungicide maneb (manganese ethylene-bis-dithiocarbamate). Scand J Work Environ Health 20:301–305

  39. Kumar V, Gill KD (2009) Aluminium neurotoxicity: neurobehavioural and oxidative aspects. Arch Toxicol 83:965–978

    Article  CAS  PubMed  Google Scholar 

  40. Pfeifer G, Roper J et al (2004) Health and environmental testing of manganese exhaust products from use of methylcyclopentadienyl manganese tricarbonyl in gasoline. Sci Total Environ 334:397–408

    Article  PubMed  Google Scholar 

  41. Flaten TP (2001) Aluminium as a risk factor in Alzheimer’s disease, with emphasis on drinking water. Brain Res Bull 55:187–196

    Article  CAS  PubMed  Google Scholar 

  42. Buchtaa M, Kiesswetterb E et al (2005) Neurotoxicity of exposures to aluminium welding fumes in the truck trailer construction industry. Environ Toxicol Pharmacol 19:677–685

    Article  Google Scholar 

  43. Colomina MT, Roig JL et al (2002) Influence of age on aluminum-induced neurobehavioral effects and morphological changes in rat brain. Neurotoxicology 23:775–781

    Article  CAS  PubMed  Google Scholar 

  44. Miu AC, Andreescu C, Vasiu R et al (2003) A behavioural and histological study of the effects of long-term exposure of adult rats to aluminium. Int J Neurosci 113:1197–1211

    Article  PubMed  Google Scholar 

  45. Narin I, Tuzen M, Soylak M (2004) Aluminium determination in environmental samples by graphite furnace atomic absorption spectrometry after solid phase extraction on Amberlite XAD-1180/pyrocatechol violet chelating resin. Talanta 63:411–418

    Article  CAS  PubMed  Google Scholar 

  46. Becaria A, Campbell A et al (2002) Aluminum as a toxicant. Toxicol Ind Health 18:309–320

    Article  CAS  PubMed  Google Scholar 

  47. Wasserman GA, Liu X, et al (2006) Water manganese exposure and children’s intellectual function in Araihazar, Bangladesh. Environ Health Perspect 124–129

  48. Montes S, Riojas-Rodríguez H et al (2008) Biomarkers of manganese exposure in a population living close to a mine and mineral processing plant in Mexico. Environ Res 106:89–95

    Article  CAS  PubMed  Google Scholar 

  49. Levy BS, Nassetta WJ (2003) Neurologic effects of manganese in humans: a review. Int J Occup Environ Health 9:153–163

    Article  CAS  PubMed  Google Scholar 

  50. Demirhan C, Tuzen M, Soylak M (2010) Speciation of Mn(II), Mn(VII) and total manganese in water and food samples by coprecipitation-atomic absorption spectrometry combination. J Hazard Mater 173:773–777

    Article  Google Scholar 

  51. Martin CJ (2006) Manganese neurotoxicity: connecting the dots along the continuum of dysfunction. Neurotoxicology 27:347–349

    Article  CAS  PubMed  Google Scholar 

  52. Andersen ME, Gearhart JM et al (1999) Pharmacokinetic data needs to support risk assessments for inhaled and ingested manganese. Neurotoxicology 20:161–172

    CAS  PubMed  Google Scholar 

  53. Dorman DC, Struve MF et al (2006) Tissue manganese concentrations in young male rhesus monkeys following subchronic manganese sulfate inhalation. Toxicol Sci 92:201–210

    Article  CAS  PubMed  Google Scholar 

  54. Yokel RA, Crossgrove JS et al (2003) Manganese distribution across the blood–brain barrier: II. Manganese efflux from the brain does not appear to be carrier mediated. Neurotoxicology 24:15–22

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Imran Afridi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arain, M.S., Afridi, H.I., Kazi, T.G. et al. Variation in the Levels of Aluminum and Manganese in Scalp Hair Samples of the Patients Having Different Psychiatric Disorders with Related to Healthy Subjects. Biol Trace Elem Res 168, 67–73 (2015). https://doi.org/10.1007/s12011-015-0353-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0353-0

Keywords

Navigation