Skip to main content
Log in

Human Biomonitoring of Trace Elements in Scalp Hair from Healthy Population of Pakistan

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The present study deals with the assessment of essential trace and toxic elements in biological samples (scalp hair) of healthy smoker and non-smoker residents of Lahore (the second most populous city), Pakistan. Human biomonitoring of various trace elements like zinc (Zn), iron (Fe), copper (Cu), chromium (Cr), cadmium (Cd), nickel (Ni), lead (Pb), and arsenic (As) was evaluated in human hair samples of smokers and non-smokers (males and females) as per IFCC criteria. For the purpose of comparison, scalp hair samples of age- and sex-equivalent healthy persons were also analyzed. The results of this study show that the concentrations (P95 values) of As (0.17, 0.81, and 0.91 μg/g), Cd (2.80, 3.81, and 3.16 μg/g), Cr (4.1, 4.2, and 5.3 μg/g), Cu (20.0, 21.0, and 21.9 μg/g), Ni (3.9, 4.6, and 4.3 μg/g), Pb (4.0, 4.8, and 5.0 μg/g), and Fe (49.0, 49.0, and 59.3 μg/g) were significantly higher in scalp hair samples of smokers than in referents, for various age groups (16–32 years, 33–50 years, and 51–62 years), respectively. The concentrations of Zn (165, 163, and 173 μg/g various age groups, respectively) in similar age group were found lower in the scalp hair samples of smokers than referents. Exposure of high toxic metal level through smoking and deficiency of Zn could be synergistic with the risk factors associated with the use of tobacco. Correlation studies for the elements in cigarette with the elements in scalp hair of male smokers show a highly positive correlation between Cr–Cd, Cr–Ni, Cu–Fe, and Ni–Zn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Angerer J, Ewers U, Wilhelm M (2007) Human biomonitoring: state of the art. Int J Hyg Environ Health 210:201–228

    Article  CAS  PubMed  Google Scholar 

  2. Foster WG, Agzarian J (2007) Reporting results of biomonitoring studies. Anal Bioanal Chem 387:137–140

    Article  CAS  PubMed  Google Scholar 

  3. Waseem A, Arshad J (2016) A review of human biomonitoring studies of trace elements in Pakistan. Chemosphere. 163:153–176

    Article  CAS  PubMed  Google Scholar 

  4. Angerer J, Aylward LL, Hays SM, Heinzow B, Wilhelm M (2011) Human biomonitoring assessment values: approaches and data requirements. Int J Hyg Environ Health 214:348–360

    Article  CAS  PubMed  Google Scholar 

  5. Freeland-Graves JH, Sanjeevi N, Lee JJ (2015) Global perspectives on trace element requirements. J Trace Elem Med Biol 31:135–141

    Article  CAS  PubMed  Google Scholar 

  6. Tang Y-R, Zhang S-Q, Xiong Y, Zhao Y, Fu H, Zhang H-P, Xiong KM (2003) Studies of five microelement contents in human serum, hair, and fingernails correlated with aged hypertension and coronary heart disease. Biol Trace Elem Res 92:97–103

    Article  CAS  PubMed  Google Scholar 

  7. Tokumaru T, Ozaki H, Onwona-Agyeman S, Ofosu-Anim J, Watanabe I (2017) Determination of the extent of trace metals pollution in soils, sediments and human hair at e-waste recycling site in Ghana. Arch Environ Contam Toxicol 73:377–390

    Article  CAS  PubMed  Google Scholar 

  8. Choi J, Aarøe Mørck T, Polcher A, Knudsen LE, Joas A (2015) Review of the state of the art of human biomonitoring for chemical substances and its application to human exposure assessment for food safety. EFSA supporting publications 2015:EN- 724. [321 pp.]. Available online: www.efsa.europa.eu/publications. Accessed 10 June 2019

  9. Waseem A, Shah SA, Sajjad A, Siddiqi AR, Nafees M (2014) Human exposure to mycotoxins: a retrospective review of leading toxins and metabolites in human biological matrices. J Chem Soc Pak 36:1196–1214

    CAS  Google Scholar 

  10. Sukumar A (2006) Human nails as a biomarker of element exposure. In: Ware GW, Nigg HN, Doerge DR (eds) Reviews of environmental contamination and toxicology, vol 185. Springer, New York, NY

  11. de Castro Maciel CJ, Miranda GM, de Oliveira DP, de Siqueira MEP, Silveira JN, Leite EMA et al (2003) Determination of cadmium in human urine by electrothermal atomic absorption spectrometry. Anal Chim Acta 491:231–237

    Article  CAS  Google Scholar 

  12. Pinto E, Cruz M, Ramos P, Santos A, Almeida A (2017) Metals transfer from tobacco to cigarette smoke: evidences in smokers’ lung tissue. J Hazard Mater 325:31–35

    Article  CAS  PubMed  Google Scholar 

  13. Afridi HI, Kazi TG, Brabazon D, Naher S (2011) Association between essential trace and toxic elements in scalp hair samples of smokers rheumatoid arthritis subjects. Sci Total Environ 412-413:93–100

    Article  CAS  PubMed  Google Scholar 

  14. Bagchi SSDBM (1997) Toxicity of trace elements in tobacco smoke. Inhal Toxicol 9:867–890

    Article  Google Scholar 

  15. Chiba M, Masironi R (1992) Toxic and trace elements in tobacco and tobacco smoke. Bull World Health Organ 70:269

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gairola CG, Wagner GJ (1991) Cadmium accumulation in the lung, liver and kidney of mice and rats chronically exposed to cigarette smoke. J Appl Toxicol 11:355–358

    Article  CAS  PubMed  Google Scholar 

  17. Hecht SS (2003) Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nat Rev Cancer 3:733–744

    Article  CAS  PubMed  Google Scholar 

  18. Kozlowski L, O’connor R (2002) Cigarette filter ventilation is a defective design because of misleading taste, bigger puffs, and blocked vents. Tob Control 11:i40–i50

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pappas RS (2011) Toxic elements in tobacco and in cigarette smoke: inflammation and sensitization. Metallomics. 3:1181–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Csalari J, Szantai K (2002) Transfer rate of cadmium, lead, zinc and iron from the tobacco-cut of the most popular Hungarian cigarette brands to the combustion products. Acta Aliment 31:279–288

    Article  CAS  Google Scholar 

  21. Ferguson LR (1999) Natural and man-made mutagens and carcinogens in the human diet. Mutat Res 443:1–10

    Article  CAS  PubMed  Google Scholar 

  22. Batool F, Iqbal S, Chan KW, Tariq MI, Shah A, Mustaqeem M (2015) Concentrations of heavy metals in hair and nails of young Pakistanis: correlation with dietary elements. Environ Forensic 16:1–6

    Article  CAS  Google Scholar 

  23. Worldometers (2019) https://www.worldometers.info/world-population/pakistan-population/. accessed on 29th May, 2019

  24. Mikulewicz M, Chojnacka K, Gedrange T, Gorecki H (2013) Reference values of elements in human hair: a systematic review. Environ Toxicol Pharmacol 36:1077–1086

    Article  CAS  PubMed  Google Scholar 

  25. Zhu YB, Li ZW, Pang YM, Huo WH, Li N, Li ZJ, Zhang J, Ye R, Wang B (2018) Association between chronic exposure to tobacco smoke and accumulation of toxic metals in hair among pregnant women. Biol Trace Elem Res 185:302–310

    Article  CAS  PubMed  Google Scholar 

  26. Skalny AV, Skalnaya MG, Tinkov AA, Serebryansky EP, Demidov VA, Lobanova YN, Grabeklis AR, Berezkina ES, Gryazeva IV, Skalny AA, Nikonorov AA (2015) Reference values of hair toxic trace elements content in occupationally non-exposed Russian population. Environ Toxicol Pharmacol 40:18–21

    Article  CAS  PubMed  Google Scholar 

  27. Afridi H, Kazi T, Kazi N, Jamali M, Arain M, Baig J et al (2010) Evaluation of cadmium, lead, nickel and zinc status in biological samples of smokers and nonsmokers hypertensive patients. J Hum Hypertens 24:34–43

    Article  CAS  PubMed  Google Scholar 

  28. Unkiewicz-Winiarczyk A, Gromysz-Kałkowska K, Szubartowska E (2009) Aluminium, cadmium and lead concentration in the hair of tobacco smokers. Biol Trace Elem Res 132:41–50

    Article  CAS  PubMed  Google Scholar 

  29. Afridi HI, Kazi TG, Jamali MK, Kazi GH, Arain MB, Jalbani N, Shar GQ, Sarfaraz RA (2006) Evaluation of toxic metals in biological samples (scalp hair, blood and urine) of steel mill workers by electrothermal atomic absorption spectrometry. Toxicol Ind Health 22:381–393

    Article  CAS  PubMed  Google Scholar 

  30. Senofonte O, Violante N, Caroli S (2000) Assessment of reference values for elements in human hair of urban schoolboys. J Trace Elem Med Biol 14:6–13

    Article  CAS  PubMed  Google Scholar 

  31. Peña-Fernández A, González-Muñoz MJ, Lobo-Bedmar MC (2014) “Reference values” of trace elements in the hair of a sample group of Spanish children (aged 6–9 years) – are urban topsoils a source of contamination? Environ Toxicol Pharmacol 38:141–152

    Article  PubMed  CAS  Google Scholar 

  32. Afridi HI, Kazi TG, Kazi N, Jamali MK, Arain MB, Jalbani N, Baig JA, Sarfraz RA (2008) Evaluation of status of toxic metals in biological samples of diabetes mellitus patients. Diabetes Res Clin Pract 80(2):280–288

  33. Skalny AV, Zhukovskaya EV, Kireeva GN, Skalnaya MG, Grabeklis AR, Radysh IV, Shakieva RA, Nikonorov AA, Tinkov AA (2018) Whole blood and hair trace elements and minerals in children living in metal-polluted area near copper smelter in Karabash, Chelyabinsk region, Russia. Environ Sci Pollut Res 25:2014–2020

    Article  CAS  Google Scholar 

  34. He MJ, Wei SQ, Sun YX, Yang T, Li Q, Wang DX (2016) Levels of five metals in male hair from urban and rural areas of Chongqing, China. Environ Sci Pollut Res 23:22163–22171

    Article  CAS  Google Scholar 

  35. Shah F, Kazi TG, Afridi HI, Kazi N, Baig JA, Shah AQ, Khan S, Kolachi NF, Wadhwa SK (2011) Evaluation of status of trace and toxic metals in biological samples (scalp hair, blood, and urine) of normal and anemic children of two age groups. Biol Trace Elem Res 141:131–149

    Article  CAS  PubMed  Google Scholar 

  36. IARC (2012) A review of human carcinogens. C. Metals, arsenic, fibres and dusts. International Agency for Research on Cancer: monographs on the evaluation of carcinogenic risks to humans, Volume 100 (C)

  37. Liang G, Pan LG, Liu XH (2017) Assessment of typical heavy metals in human hair of different age groups and foodstuffs in Beijing, China. Int J Environ Res Public Health 14(8)914

  38. Wadhwa SK, Kazi TG, Kolachi NF, Afridi HI, Khan S, Chandio AA, Shah AQ, Kandhro GA, Nasreen S (2011) Case-control study of male cancer patients exposed to arsenic-contaminated drinking water and tobacco smoke with relation to non-exposed cancer patients. Hum Exp Toxicol 30:2013–2022

    Article  CAS  PubMed  Google Scholar 

  39. Kolachi NF, Kazi TG, Afridi HI, Kazi NG, Khan S (2012) Investigation of essential trace and toxic elements in biological samples (blood, serum and scalp hair) of liver cirrhotic/cancer female patients before and after mineral supplementation. Clin Nutr 31:967–973

    Article  CAS  PubMed  Google Scholar 

  40. Nordberg GF (2009) Historical perspectives on cadmium toxicology. Toxicol Appl Pharmacol 238:192–200

    Article  CAS  PubMed  Google Scholar 

  41. Pasha Q, Malik S, Iqbal J, Shaheen N, Shah M (2008) Comparative distribution of the scalp hair trace metal contents in the benign tumour patients and normal donors. Environ Monit Assess 147:377–388

    Article  CAS  PubMed  Google Scholar 

  42. Kazi TG, Wadhwa SK, Afridi HI, Kazi N, Kandhro GA, Baig JA, Shah AQ, Kolachi NF, Arain MB (2010) Interaction of cadmium and zinc in biological samples of smokers and chewing tobacco female mouth cancer patients. J Hazard Mater 176:985–991

    Article  CAS  PubMed  Google Scholar 

  43. Benes B, Sladká J, Spevácková V, Smid J (2003) Determination of normal concentration levels of Cd, Cr, Cu, Hg, Pb, Se and Zn in hair of the child population in the Czech Republic. Cent Eur J Public Health 11:184–186

    CAS  PubMed  Google Scholar 

  44. Dongarrà G, Lombardo M, Tamburo E, Varrica D, Cibella F, Cuttitta G (2011) Concentration and reference interval of trace elements in human hair from students living in Palermo, Sicily (Italy). Environ Toxicol Pharmacol 32:27–34

    Article  PubMed  CAS  Google Scholar 

  45. Seifert B, Becker K, Helm D, Krause C, Schulz C, Seiwert M (2000) The German Environmental Survey 1990/1992 (GerES II): reference concentrations of selected environmental pollutants in blood, urine, hair, house dust, drinking water and indoor air. J Expo Anal Environ Epidemiol 10(6 Pt 1):552–565

    Article  CAS  PubMed  Google Scholar 

  46. ATSDR (2012) Toxicological profile for manganese, agency for toxic substances and disease registry. US Public Health Service

  47. Skalny AV, Skalnaya MG, Grabeklis AR, Zhegalova IV, Serebryansky EP, Demidov VA, Salnikova EV, Uzhentseva MS, Lobanova YN, Skalny AA, Tinkov AA (2018) Interactive effects of age and gender on levels of toxic and potentially toxic metals in children hair in different urban environments. Int J Environ Anal Chem 98:520–535

    Article  CAS  Google Scholar 

  48. Qayyum MA, Shah MH (2014) Comparative assessment of selected metals in the scalp hair and nails of lung cancer patients and controls. Biol Trace Elem Res 158:305–322

    Article  PubMed  CAS  Google Scholar 

  49. Khalique A, Ahmad S, Anjum T, Jaffar M, Shah MH, Shaheen N, Tariq SR, Manzoor S (2005) A comparative study based on gender and age dependence of selected metals in scalp hair. Environ Monit Assess 104:45–57

    Article  CAS  PubMed  Google Scholar 

  50. Kazi TG, Afridi HI, Kazi N, Jamali MK, Arain MB, Jalbani N, Kandhro GA (2008) Copper, chromium, manganese, iron, nickel, and zinc levels in biological samples of diabetes mellitus patients. Biol Trace Elem Res 122:1–18

    Article  CAS  PubMed  Google Scholar 

  51. Mannino DM, Albalak R, Grosse S, Repace J (2003) Second-hand smoke exposure and blood lead levels in US children. Epidemiology. 14:719–727

    Article  PubMed  Google Scholar 

  52. Afridi HI, Kazi TG, Kazi N, Kandhro GA, Baig JA, Shah AQ, Khan S, Kolachi NF, Wadhwa SK, Shah F, Jamali MK, Arain MB (2011) Evaluation of cadmium, chromium, nickel, and zinc in biological samples of psoriasis patients living in Pakistani cement factory area. Biol Trace Elem Res 142:284–301

    Article  CAS  PubMed  Google Scholar 

  53. NIH (2013) Lead and Your Health, National Institute of Environmental Health Sciences, USA. Available at http://www.niehs.nih.gov/health/topics/agents/lead/. Accessed 10 June 2019

  54. NTP (2012) Monograph on health effects of low-level lead, National Toxicology Program, U.S. Department of Health and Human Services

  55. Kazi TG, Shah F, Shaikh HR, Afridi HI, Shah A, Naeemullah SSA et al (2014) Exposure of lead to mothers and their new born infants, residents of industrial and domestic areas of Pakistan. Environ Sci Pollut Res 21:3021–3030

    Article  CAS  Google Scholar 

  56. Rahman MA, Rahman B, Ahmad MS, Blann A, Ahmed N (2012) Blood and hair lead in children with different extents of iron deficiency in Karachi. Environ Res 118:94–100

    Article  CAS  PubMed  Google Scholar 

  57. WHO (1996) Trace elements in human nutrition and health. World Health Organization, Geneva

    Google Scholar 

  58. Gaetke LM, Chow CK (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology. 189:147–163

    Article  CAS  PubMed  Google Scholar 

  59. HC (2013) Health Canada, Report on human biomonitoring of environmental chemicals in Canada. Results of the Canadian Health Measures Survey Cycle 1 (2007 – 2009). August 2010. Available from: http://www.healthcanada.gc.ca. Accessed 10 June 2019

  60. Kolachi NF, Kazi TG, Afridi HI, Kazi N, Kandhro GA, Shah AQ, Baig JA, Wadhwa SK, Khan S, Shah F, Jamali MK, Arain MB (2011) Distribution of copper, iron, and zinc in biological samples (scalp hair, serum, blood, and urine) of Pakistani viral hepatitis (A-E) patients and controls. Biol Trace Elem Res 143:116–130

    Article  CAS  PubMed  Google Scholar 

  61. Ashraf W, Jaffar M, Anwer K, Ehsan U (1995) Age- and sex-based comparative distribution of selected metals in the scalp hair of an urban population from two cities in Pakistan. Environ Pollut 87:61–64

    Article  CAS  PubMed  Google Scholar 

  62. ATSDR (2005) Toxicological profile for zinc, Agency for Toxic Substances and Disease Registry, US Public Health Service

  63. Rostan EF, DeBuys HV, Madey DL, Pinnell SR (2002) Evidence supporting zinc as an important antioxidant for skin. Int J Dermatol 41:606–611

    Article  CAS  PubMed  Google Scholar 

  64. FNB/IOM (2006) Dietary Reference Intakes: The essential guide to nutrient requirements: food and nutrition board, Institute of Medicine

  65. Salgueiro MJ, Zubillaga M, Lysionek A, Sarabia MI, Caro R, De Paoli T et al (2000) Zinc as an essential micronutrient: a review. Nutr Res 20:737–755

    Article  CAS  Google Scholar 

  66. Ilyas A, Ahmad H, Shah MH (2015) Comparative study of elemental concentrations in the scalp hair and nails of myocardial infarction patients versus controls from Pakistan. Biol Trace Elem Res 166:123–135

    Article  CAS  PubMed  Google Scholar 

  67. Kazi TG, Wadhwa SK, Afridi HI, Kazi N, Kandhro GA, Baig JA et al (2010) Evaluation of cadmium and zinc in biological samples of tobacco and alcohol user male mouth cancer patients. Hum Exp Toxicol 29:221–230

    Article  CAS  PubMed  Google Scholar 

  68. Afridi HI, Kazi TG, Kazi NG, Jamali MK, Arain MB, Baig J et al (2010) Evaluation of cadmium, lead, nickel and zinc status in biological samples of smokers and nonsmokers hypertensive patients. J Hum Hypertens 24:34–43

    Article  CAS  PubMed  Google Scholar 

  69. Iyengar V, Woittiez J (1988) Trace elements in human clinical specimens: evaluation of literature data to identify reference values. Clin Chem 34:474–481

    Article  CAS  PubMed  Google Scholar 

  70. Cairo G, Bernuzzi F, Recalcati S (2006) A precious metal: Iron, an essential nutrient for all cells. Genes Nutr 1:25–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. WHO/CDC (2007) Assessing the iron status of populations: including literature reviews: report of a Joint World Health Organization/Centers for Disease Control and Prevention Technical Consultation on the Assessment of Iron Status at the Population Level, Geneva, 6–8 April 2004. – 2nd ed

  72. Goldhaber SB (2003) Trace element risk assessment: essentiality vs. toxicity. Regul Toxicol Pharmacol 38:232–242

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Higher Education Commission, Pakistan, for providing financial assistance project no. 6172/Federal/NRPU/R&D/HEC/2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Waseem.

Ethics declarations

All procedures performed within the study were in agreement with the ethical principles set by the 1964 Declaration of Helsinki and its later amendments (2013). The protocol of the study was approved by the Institutional Ethics Committee (Dr. Muhammad Ayub, Director, Institute of Biochemistry; Dr. Kaleemullah, Chairperson, Graduate Studies, University of Balochistan, Quetta, Pakistan). All examinees have signed an informed consent form prior to the inclusion into the study (the details of committee and consent form can be found in supplementary information).

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 408 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noreen, F., Sajjad, A., Mahmood, K. et al. Human Biomonitoring of Trace Elements in Scalp Hair from Healthy Population of Pakistan. Biol Trace Elem Res 196, 37–46 (2020). https://doi.org/10.1007/s12011-019-01906-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01906-0

Keywords

Navigation