Skip to main content

Advertisement

Log in

Inhibitory Effect of Fluoride on Na+,K+ ATPase Activity in Human Erythrocyte Membrane

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The present study was performed to evaluate the role of long-term consumption of excessive fluoride on electrolyte homeostasis and their transporting mechanisms in erythrocytes of subjects afflicted with dental and skeletal fluorosis. A total of 620 adult (20–50 years) Indian residents participated in this study: 258 men and 242 women exposed to high concentrations of fluoride and 120 age and gender-matched control subjects. Erythrocytes were isolated from blood samples, washed, and used for the estimation of intraerythrocyte sodium and potassium concentrations. Na+,K+ ATPase activity was determined spectrophotometrically from a ghost erythrocyte membrane prepared by osmotic lysis. Erythrocyte analytes were correlated with the water and serum fluoride concentrations by Pearson’s bivariate correlation and regression analysis. Results indicated a significant increase in intraerythrocyte sodium (F = 14306.265, P < 0.0001) in subjects from endemic fluorosis study groups as compared to controls. A significant (P < 0.05) positive correlation of intracellular sodium was found with water and serum fluoride concentrations. Mean concentration of intraerythrocytic potassium ions showed significant reduction (F = 9136.318, P < 0.0001) in subjects exposed to fluoride. A significant (P < 0.05) negative correlation of potassium ions was noted with water and serum fluoride concentrations. Na+,K+ ATPase activity was significantly declined (F = 1572.763, P < 0.0001) in subjects exposed to fluoride. A significant (P < 0.05) inverse relationship of Na+,K+ ATPase activity was revealed with water and serum fluoride concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Guminska M (1981) Biochemical mechanisms of fluoride action on living organism. Folia Med Cracov 23:305–321

    CAS  PubMed  Google Scholar 

  2. McIvor ME (1990) Acute fluoride toxicity. Pathophysiol Manag Drug Saf 5:79–85. doi:10.2165/00002018-199005020-00001

    Article  CAS  Google Scholar 

  3. Whitford GM (1994) Intake and metabolism of fluoride. Adv Dent Res 8:5–14

    CAS  PubMed  Google Scholar 

  4. Yoshida H, Nagai K, Kamei M, Nakagawa Y (1968) Irreversible inactivation of (Na+−K+)-dependent ATPase and K+-dependent phosphatase by fluoride. Biochim Biophys Acta 150:162–164. doi:10.1016/0005-2736(68)90021-7

    Article  CAS  PubMed  Google Scholar 

  5. Murphy AJ, Coll RJ (1992) Fluoride is a slow, tight-binding inhibitor of the calcium ATPase of sarcoplasmic reticulum. J Biol Chem 267:5229–5235

    CAS  PubMed  Google Scholar 

  6. Cornelius F (1991) Functional reconstitution of sodium pump, kinetics of exchange reactions performed by reconstituted Na+/K+ATPase. Biochim Biophys Acta 1071:19–66. doi:10.1016/0304-4157(91)90011-K

    Article  CAS  PubMed  Google Scholar 

  7. Murphy AJ, Hoover JC (1992) Inhibition of the Na, K-ATPase by fluoride parallels with its inhibition of the sarcoplasmic reticulum caATPase. J Biol Chem 267(24):16995–17000

    CAS  PubMed  Google Scholar 

  8. Suketa Y, Suzuki K, Taki T, Itoh Y, Yamaguchi M, Sakurai T, Tanishita Y (1995) Effect of fluoride on the activities of the Na+/glucose cotransporter and Na+/K(+)-ATPase in brush border and basolateral membranes of rat kidney (in vitro and in vivo). Biol Pharm Bull 18:273–278. doi:10.1248/bpb.18.273

    Article  CAS  PubMed  Google Scholar 

  9. Ekambaram P, Paul V (2002) Modulation of fluoride toxicity in rats by calcium carbonate and by withdrawal of fluoride exposure. Pharmacol Toxicol 90:53–58. doi:10.1034/j.1600-0773.2002.900201.x

    Article  CAS  PubMed  Google Scholar 

  10. Agalakova NI, Gusev GP (2008) Diverse effects of fluoride on Na+ and K+ transport across the rat erythrocyte membrane. Fluoride 41(1):28–39

    CAS  Google Scholar 

  11. Kravtsova VV, Kravtsov OV (2004) Inactivation of Na+, K+-ATPase from cattle brain by sodium fluoride. Ukr Biokhim Zh 76:39–47

    CAS  Google Scholar 

  12. Feig SA, Shonet SB, Nathan DG (1971) Energy metabolism in human erythrocytes. I. Effects of sodium fluoride. J Clin Invest 50:1731–1737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Millman MS, Omachi A (1972) The role of oxidized nicotinamide adenine dinucleotide in fluoride inhibition of active sodium transport in human erythrocytes. J Gen Physiol 60:337–350. doi:10.1085/jgp.60.3.337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Han B, Yoon SS, Wu PF, Han HR, Liang LC (2005) Role of selenium in alteration of erythrocyte parameters in bovine fluorosis. Asian-Aust J Anim Sci 19(6):865–871. doi:10.5713/ajas.2006.865

    Article  Google Scholar 

  15. Organization WH (2008) Fluoride in drinking water. IWA Publishing London, Geneva, pp 1–131

    Google Scholar 

  16. Wang Y, Yin Y, Gilula LA (1994) Endemic fluorosis of the skeleton: radiographic features in 127 patients. Am J Roentgenol 162:93–98

    Article  CAS  Google Scholar 

  17. Dean T (1934) Classification of mottled enamel diagnosis. J Am Dent Assoc 21:1421–1426

    Google Scholar 

  18. Hall LL, Smith FA, Delopez OH, Gardner DE (1972) Direct potentiometric determination of total ionic fluoride in biological fluids. Clin Chem 18:1455–1458

    CAS  PubMed  Google Scholar 

  19. Harwood JE (1969) The use of an ion-selective electrode for routine analysis of water samples. Water Res 3:273

    Article  CAS  Google Scholar 

  20. Tabassum M, Mumtaz M, Haleem MA (1996) Electrolyte content of serum, kidney and heart tissue in salt induced hypertensive rats. Life Sci 59(9):731

    Article  Google Scholar 

  21. Weed RI, Reed CF, Berg G (1963) Is haemoglobin an essential component of erythrocyte membrane? J C Invest 42:581

    Article  CAS  Google Scholar 

  22. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  23. Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–379

    CAS  Google Scholar 

  24. Quigley JP, Gotterer GS (1969) Distribution of (Na+−K+)-stimulated ATPase activity in rat intestinal mucosa. Biochim Biophys Acta 173(3):456–468. doi:10.1016/0005-2736(69)90010-8

    Article  CAS  PubMed  Google Scholar 

  25. Grabowska M, Gumińska M (1985) Effect of sodium fluoride on magnesium-activated ATPase from human erythrocyte membranes. Folia Med Cracov 26(1–2):29–33

    CAS  PubMed  Google Scholar 

  26. Grabowska M, Guminska M, Ignacak J (1991) Inhibitory effect of environmental pollutants on erythrocyte membrane ATPase activity in humans. Folia Med Cracov 32(1–2):103–110

    CAS  PubMed  Google Scholar 

  27. Kumari DS, Rao PR (1991) Red cell membrane alterations in human chronic fluoride toxicity. Biochem Int 23(4):639–648

    CAS  PubMed  Google Scholar 

  28. Morrison JF, Walsh CT (1988) The behavior and significance of slow-binding enzyme inhibitors. Adv Enzymol Relat Areas Mol Biol 61:201–301

    CAS  PubMed  Google Scholar 

  29. Jain SK, Susheela AK (1987) Effect of sodium fluoride—on erythrocyte membrane function—with reference to metal ion transport in rabbits. Chemosp 16(5):1087–1094. doi:10.1016/0045-6535(87)90045-2

    Article  CAS  Google Scholar 

  30. Suketa Y, Mikami E (1977) Changes in urinary ion excretion and related renal enzymes activities in fluoride treated rats. Toxicol Appl Pharmacol 40:551–559. doi:10.1016/0041-008X(77)90079-5

    Article  CAS  PubMed  Google Scholar 

  31. Chinoy NJ, Walimbe AS, Vyas HA, Mangla P (1994) Transient and reversible fluoride toxicity in some soft tissues of female mice. Fluoride 27(4):205–214

    CAS  Google Scholar 

  32. Adamek E, Pawlowska-Goral K, Bober K (2005) In vitro and in vivo effects of fluoride ions on enzyme activity. Ann Acad Med Stetin 51:69–85

    CAS  PubMed  Google Scholar 

  33. Kumari DS, Rao PR (1991) Red blood cell glucose metabolism in human chronic fluoride toxicity. Bull Environ Contam Toxicol 47(6):834–839

    Article  Google Scholar 

  34. Guminska M, Sterkowicz J (1975) Biochemical changes in the blood of humans chronically exposed to fluorides. Acta Med Pol 16(3):215–224

    CAS  PubMed  Google Scholar 

  35. Kędryna T, Marchut E, Guminska M (1991) Biochemical indicators of carbohydrate and energy metabolism in the Chorzow population after long-term exposure to industrial pollutants. Folia Med Cracov 32(1–2):95–102

    PubMed  Google Scholar 

  36. Fambrough DM, Wolitzky BA, Tamkun MM, Takeyasu K (1987) Regulation of the sodium pump in excitable cells. Kidney Int 32:97–112

    Google Scholar 

  37. Rahman M, Koh H, Primra MI, Del Greco F, Quintanilla AP (1986) Na, K-ATPase and cation content in the erythrocyte in essential hypertension. J Lab Clin Med 107(4):337–341

    CAS  PubMed  Google Scholar 

  38. Rubython EJ, Morgan DB (1983) Effects of hypokalaemia on the ouabain-sensitive sodium transport and the ouabain-binding capacity in human erythrocytes. Clin Sci 64:177–182

    Article  CAS  PubMed  Google Scholar 

  39. Lasker N, Hopp L, Grossman S, Bamforth R, Aviv A (1985) Race and sex difference in erythrocyte Na+, K+, and Na+-K+-adenosine triphosphatase. J Clin Invest 75:1813–1820

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Karai I, Fukumoto K, Horiguchi S (1982) An increase in Na+/K+-ATPase activity of erythrocyte membranes in workers employed in a lead refining factory. British J Industrial Med 39:290–294

    CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by grants from the University Grants Commission, Government of India, in the form of the Rajiv Gandhi National fellowship. The authors wish to thank the Head, Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, India, for the laboratory assistance.

Conflict of Interests

The authors declare that they have no conflicts of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashi A.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

A, S., G, M. Inhibitory Effect of Fluoride on Na+,K+ ATPase Activity in Human Erythrocyte Membrane. Biol Trace Elem Res 168, 340–348 (2015). https://doi.org/10.1007/s12011-015-0349-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0349-9

Keywords

Navigation