Skip to main content
Log in

The Effect of Mercury Chloride and Boric Acid on Rat Erythrocyte Enzymes

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the effects of mercury chloride and boric acid on rat (Wistar albino) erythrocyte: glucose 6-phosphate dehydrogenase (G6PD), 6-phosphoglucona-te dehydrogenase (6PGD), thioredoxin reductase (TrxR), glutathione reductase (GR) and glutathione S-transferase (GST) enzymes in vivo, and the rat erythrocyte G6PD enzyme in vitro. In the in vivo study, 24 male rats were divated into three different groups: control (C), mercury chloride (M), and mercury chloride + boric acid (M + BA). At the completion of this study, a significant degree of inhibition for both G6PD and GST enzyme activity was observed in the M groups when compared to the C group (p < 0.05), and no significant effect was observed in the 6PGD enzyme. However, there was significantly increased TrxR and GR enzyme activity of both the M and M + BA groups (p < 0.05). In the in vitro study, the G6PD enzyme from rat erythrocytes was purified with 2′,5′-ADP Sepharose-4B affinity chromatography, and the effect of both mercury chloride and boric acid on the enzyme activity was investigated. The results showed that boric acid increased the G6PD enzyme activity while the mercury ions that inhibited the enzyme activity (IC50 values of 346 μM and Ki values of 387 μM) were noncompetitive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Al-Attar AM (2011) Antioxidant effect of vitamin E treatment on some heavy metals-induced renal and testicular injuries in male mice. Saudi J Biol Sci 18:63–72

    Article  CAS  PubMed  Google Scholar 

  2. Kucuk M, Gulcin I (2016) Purification and characterization of the carbonic anhydrase enzyme from Black Sea trout (Salmo trutta Labrax Coruhensis) kidney and inhibition effects of some metal ions on enzyme activity. Environ Toxicol Pharmacol 44:134–139

    Article  CAS  PubMed  Google Scholar 

  3. Houston MC (2011) Role of mercury toxicity in hypertension, cardiovascular disease, and stroke. J Clin Hypertens 13:621–627

    Article  CAS  Google Scholar 

  4. Griswold W, Martin SH (2009) Human health effects of heavy metals. Environ Sci Technol 15:1–6

    Google Scholar 

  5. Zalups RK (2000) Molecular interactions with mercury in the kidney. Pharmacol Rev 52:113–143

    CAS  Google Scholar 

  6. Nogueira CW, Soares FA, Nascimento PC, Muller DA, JBT R (2003) Dimercaptopropane-1-sulfonic acid and meso-2,3- dimercaptosuccninic acid increase mercury and cadmium-induced inhibition of d-aminolevulinic acid dehydratase. Toxicology 184:85–95

    Article  CAS  PubMed  Google Scholar 

  7. Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336

    Article  CAS  Google Scholar 

  8. Gulcin I (2007) Comparison of in vitro antioxidant and antiradical activities of L-tyrosine and L-dopa. Amino Acids 32:431–438

    Article  CAS  Google Scholar 

  9. Kot FS (2009) Boron sources, speciation and its potential impact Ob health. Rev Environ Sci Biotechnol 8:3–28

    Article  CAS  Google Scholar 

  10. Devirian TA, Volpe SL (2003) The physiological effects of dietary boron. Crit Rev Food Sci Nutr 43:219–231

    Article  CAS  PubMed  Google Scholar 

  11. Hunt CD (2007) Dietary boron: evidence for essentiality and homeostatic control in humans and animalsi. Adv Plant Anim Boron Nutr Springer, Dordrecht 251–267

  12. Barranco WT, Kim DH, Stella SL, Eckhert CD (2009) Boric acid inhibits stored Ca2+ release in DU-145 prostate cancer cells. Cell Biol Toxicol 25:309–320

    Article  CAS  PubMed  Google Scholar 

  13. Scorei R (2012) A mini-review of the essentiality of boron for the appearance of life on earth. Orig Life Evol Biosph 42:3–17

    Article  CAS  PubMed  Google Scholar 

  14. Mahabir S, Spitz MR, Barrera SL, Dong YQ, Eastham C, Forman MR (2008) Dietary boron and hormone replacement therapy as risk factors for lung cancer in women. Am J Epidemiol 167:1070–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Krebs HA, Eggleston LV (1978) The regulation of the pentosephosphate cycle in rat liver. In: weber G (ed). Adv enzymeregul, Oxford: Perg Pr Ltd 12 :421–433

  16. Nelson DL, Cox MM (2000) Lehninger principles of biochemistry. 3rd ed. USA: Worth Publish. USA. 743–744

  17. Beydemir S, Ciftci M, Kufrevioglu OI (2002) Purification and characterization of glucose 6-phosphate dehydrogenase from sheep erythrocytes and inhibitory effects of some antibiotics on enzyme activity. J Enzyme Inhib Med Chem 17:271–277

    Article  CAS  PubMed  Google Scholar 

  18. Beydemir S, Ciftci M, Yilmaz H, Kufrevioglu OI (2004) 6-phosphogluconate dehydrogenase: purification, characterization and kinetic properties from rat erythrocytes. Turk J Vet Anim Sci 28:707–714

    Google Scholar 

  19. Beydemir Ş, Gülçin İ, Hisar O, Küfrevioğlu Öİ, Yanik T (2005) Effect of melatonin on glucose-6-phosphate dehydrogenase from rainbow trout (Oncorhynchus mykiss) erythrocytes in vitro and in vivo. J Appl Anim Res 28:65–68

    Article  CAS  Google Scholar 

  20. Beydemir S, Gücin I, Küfrevioğlu OI, Ciftci M (2003) Glucose 6-phosphate dehydrogenase: in vitro and in vivo effects of dantrolene sodium. Pol J Pharmacol 55:787–792

    CAS  PubMed  Google Scholar 

  21. Gulcin I, Beydemir S, Çoban TA, Ekinci D (2008) The inhibitory effect of dantrolene sodium and propofol on 6-phosphogluconate dehydrogenase from rat erythrocyte. Fresenius Environ Bull 17:1283–1287

    CAS  Google Scholar 

  22. Hayes JD, Pulford DJ (1995) The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistence. CRC Crit Rev Biochem Mol Biol 30:445–600

    Article  CAS  Google Scholar 

  23. Powis G, Montfort WR (2001) Properties and biological activities of thioredoxins. Annu Rev Pharmacol Toxicol 41:261–295

    Article  CAS  PubMed  Google Scholar 

  24. Knapen MF, Zusterzeel PL, Peters WH, Steegers EA (1999) Glutathione and glutathione-related enzymes in reproduction. Eur J Obstet Gynecol Reprod Biol 82:171–184

    Article  CAS  PubMed  Google Scholar 

  25. Temel Y, Bengü AŞ, Akkoyun HT, Akkoyun M, Ciftci M (2017) Effect of astaxanthin and aluminum chloride on erythrocyte G6PD and 6PGD enzyme activities in vivo and on erythrocyte G6PD in vitro in rats. J Biochem Mol Toxicol 31:e21954

    Article  CAS  Google Scholar 

  26. Ninfali P, Orsenigo T, Barociani SR (1990) Rapid purification of glucose 6-phosphogluconate dehydrogenase from mammal's erythrocytes. Prep Biochem 20:297–309

    CAS  PubMed  Google Scholar 

  27. Temel Y, Kocyigit UM (2017) Purification of glucose-6-phosphate dehydrogenase from rat (Rattus norvegicus) erythrocytes and inhibition effects of some metal ions on enzyme activity. J Biochem Mol Toxicol 31:e21927

    Article  CAS  Google Scholar 

  28. Temel Y, Ayna A, Shafeeq IH, Ciftci M (2018) In vitro effects of some antibiotics on glucose-6-phosphate dehydrogenase from rat (Rattus norvegicus) erythrocyte. J Drug Chem Toxicol DOI: https://doi.org/10.1080/01480545.2018.1481083, 1, 5

  29. Beutler E (1971) Red cell metabolism. Manual of biochemical methods Acad Pres London 12:68–70

  30. Carlberg I, Mannervik B (1981) Purification and characterization of glutathione reductase from calf liver. Glutathione reductase assays. Methods Enzymol 113:484–495

    Article  Google Scholar 

  31. Holmgren A (1977) Bovine thioredoxin system. J Biol Chem 252:4600–4606

    CAS  PubMed  Google Scholar 

  32. Temel Y, Kufrevioglu OI, Ciftci M (2017) Investigation of the effects of purification and characterization of Turkey (Meleagris gallopavo) liver mitochondrial thioredoxin reductase enzyme and some metal ions on enzyme activity. Turk J Chem 41:48–60

    Article  CAS  Google Scholar 

  33. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferase a. J Biol Chem 249:7130–7139

    CAS  PubMed  Google Scholar 

  34. Lineweaver H, Burk D (1934) The determination of enzyme dissocation constants. J Am Chem Soc 57:685

    Google Scholar 

  35. Lu J, Holmgren A (2014) The thioredoxin antioxidant system. Free Radic Biol Med 66:75–87

    Article  CAS  PubMed  Google Scholar 

  36. Pompella A, Visvikis A, Paolicchi A, De Tata V, Casini AF (2003) The changing faces of glutathione, a cellular protagonist. Biochem Pharmacol 66:1499–1503

    Article  CAS  PubMed  Google Scholar 

  37. Li X (2009) Glutathione and glutathione s-transferase in detoxification mechanisms. Gen app sys. Tox. 1-13. https://doi.org/10.1002/9780470744307.gat166

  38. Papp LV, Lu J, Holmgren A, Khanna K (2007) From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal 9:775–806

    Article  CAS  PubMed  Google Scholar 

  39. Koháryová M, Kollárová M (2015) Thioredoxin system – a novel therapeutic target. Gen Physiol Biophys 34:221–233

    Article  CAS  PubMed  Google Scholar 

  40. Clarkson TW (1997) The toxicology of mercury. Crit Rev Clin Lab Sci 34:369–403

    Article  CAS  PubMed  Google Scholar 

  41. Augusti PR, Conterato GMM, Somacal S, Sobieski R, Spohr PR, Torres JV, Chara MF, Moro AM, Rocha MP, Garcia SC, Emanuelli T (2008) Effect of astaxanthin on kidney function impairment and oxidative stress induced by mercuric chloride in rats. Food Chem Toxicol 46:212–219

    Article  CAS  PubMed  Google Scholar 

  42. Ma Y, Shi Y, Li L, Xie C, Zou X (2018) Toxicological effects of mercury chloride on laying performance, egg quality, serum biochemistry, and histopathology of liver and kidney in laying hens. Biol Trace Elem Res 185:465–474

    Article  CAS  PubMed  Google Scholar 

  43. Ince S, Küçükkurt İ, Demirel HH, Acaroz DA, Akbel E, Ciğerci H (2014) Protective effects of boron on cyclophosamide induced lipid peroxidation and genotoxicity in rats. Chemosphere 108:197–20443

    Article  CAS  PubMed  Google Scholar 

  44. Cakir S, Eren M, Senturk M, Soyer Sarica Z (2018) The effect of boron on some biochemical parameters in experimental diabetic rats. Biol Trace Elem Res 184:165–172. https://doi.org/10.1007/s12011-017-1182-0

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Temel.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temel, Y., Taysi, M.Ş. The Effect of Mercury Chloride and Boric Acid on Rat Erythrocyte Enzymes. Biol Trace Elem Res 191, 177–182 (2019). https://doi.org/10.1007/s12011-018-1601-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-018-1601-x

Keywords

Navigation