Skip to main content
Log in

Dose- and Time-Dependent In Vitro Effects of Divalent and Trivalent Iron on the Activity of Bovine Spermatozoa

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This in vitro study was designed to assess the impact of divalent (Fe2+) or trivalent (Fe3+) iron on the activity and oxidative balance of bovine spermatozoa at specific time intervals (0, 2, 8, 16, and 24 h) during an in vitro culture. Forty-five semen samples were collected from adult breeding bulls and diluted in physiological saline solution supplemented with different concentrations (0, 1, 5, 10, 50, 100, 200, 500, 1000 μmol/L) of FeCl2 or FeCl3. Spermatozoa motion parameters were assessed using the SpermVision™ computer-aided sperm analysis (CASA) system. Cell viability was examined with the metabolic activity 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and the nitroblue-tetrazolium (NBT) test was applied to quantify the intracellular superoxide formation. Both divalent and trivalent iron exhibited a dose- and time-dependent impact on the spermatozoa physiology and oxidative balance. Concentrations ≥50 μmol/L FeCl2 and ≥100 μmol/L FeCl3 led to a significant decrease of spermatozoa motility (P < 0.05) and mitochondrial activity (P < 0.001 with respect to 200–1000 μmol/L FeCl2/FeCl3; P < 0.01 in case of 100 μmol/L FeCl2/FeCl3), accompanied by a significant superoxide overproduction (P < 0.001 in terms of 200–1000 μmol/L FeCl2 and 500–1000 μmol/L FeCl3; P < 0.01 with respect to 100 μmol/L FeCl2 and 100–200 μmol/L FeCl3). On the other hand, concentrations below 10 μmol/L FeCl2 and 50 μmol/L FeCl3 proved to stimulate the spermatozoa activity, as shown by a significant preservation of the motility and viability characteristics (P < 0.001 in case of the motility parameters; P < 0.01 with respect to the spermatozoa viability), alongside a significant decline of the superoxide generation (P < 0.05). In a direct comparison, divalent iron has been shown to be more toxic than trivalent iron. Results from this in vitro study show that high concentrations of both forms of iron are toxic, while their low concentrations may have spermatozoa activity-promoting properties. In vitro concentrations of divalent or trivalent iron that could be regarded as critical are 50 μmol/L FeCl2 and 100 μmol/L FeCl3 when iron ceases to be an essential micronutrient in order to become a toxic risk factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tvrda E, Peer R, Sikka SC, Agarwal A (2015) Iron and copper in male reproduction: a double-edged sword. J Assist Reprod Genet 32(1):3–16. doi:10.1007/s10815-014-0344-7

    Article  PubMed  Google Scholar 

  2. Lieu PT, Heiskala M, Peterson PA, Yang Y (2011) The roles of iron in health and disease. Mol Asp Med 22:1–87. doi:10.1016/S0098-2997(00)00006-6

    Article  Google Scholar 

  3. Wise T, Lunstra DD, Rohrer GA, Ford JJ (2003) Relationships of testicular iron and ferritin concentrations with testicular weight and sperm production in boars. J Anim Sci 81:503–511

    CAS  PubMed  Google Scholar 

  4. Kodama H, Kuribayashi Y, Gagnon C (1996) Effect of sperm lipid peroxidation on fertilization. J Androl 17(2):151–157. doi:10.1002/j.1939-4640.1996.tb01764.x

    CAS  PubMed  Google Scholar 

  5. Kňažická Z, Lukáčová J, Tvrdá E, Greń A, Goc Z, Massányi P, Lukáč N (2012) In vitro assessment of iron effect on the spermatozoa motility parameters. J Microbiol Biotechnol Food Sci 2:414–425

    Google Scholar 

  6. Aitken RJ, Harkiss D, Buckingham D (1993) Relationship between iron-catalysed lipid peroxidation potential and human sperm function. J Reprod Fertil 98:257–265. doi:10.1530/jrf.0.0980257

    Article  CAS  PubMed  Google Scholar 

  7. Wang J, Pantopoulos K (2011) Regulation of cellular iron metabolism. Biochem J 434:365–381. doi:10.1042/BJ20101825

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Merker HJ, Baumgartner W, Kovac G, Bartko P, Rosival I, Zezula I (1996) Iron-induced injury of rat testis. Andrologia 28:267–273. doi:10.1111/j.1439-0272.1996.tb02795.x

    Article  CAS  PubMed  Google Scholar 

  9. De Lourdes MP, Garcia FC (2003) Spermatogenesis recovery in the mouse after iron injury. Hum Exp Toxicol 22(5):275–279. doi:10.1191/0960327103ht344oa

    Article  Google Scholar 

  10. Elia J, Imbrogno N, Delfino M, Mazzilli R, Rossi T, Mazzilli F (2010) The importance of the sperm motility classes—future directions. Open Androl J 2:42–43

    Google Scholar 

  11. Krockova J, Massányi P, Toman R, Danko J, Roychoudhury S (2012) In vivo and in vitro effect of bendiocarb on rabbit testicular structure and spermatozoa motility. J Environ Sci Health A 47(9):1301–1311. doi:10.1080/10934529.2012.672136

    Article  CAS  Google Scholar 

  12. Massanyi P, Chrenek P, Lukáč N, Makarevich AV, Ostro A, Živčák J, Bulla J (2008) Comparison of different evaluation chambers for analysis of rabbit spermatozoa motility using CASA system. Slovak J Anim Sci 41:60–66

    Google Scholar 

  13. Lukac N, Bardos L, Stawarz R, Roychoudhury S, Makarevich AV, Chrenek P, Danko J, Massanyi P (2011) In vitro effect of nickel on bovine spermatozoa motility and annexin V-labeled membrane changes. J Appl Toxicol 31(2):144–149. doi:10.1002/jat.1574

    CAS  PubMed  Google Scholar 

  14. Cooper TG, Yeung CH (2006) Computer-aided evaluation of assessment of “grade a” spermatozoa by experienced technicians. Fertil Steril 85:220–224. doi:10.1016/j.fertnstert.2005.07.1286

    Article  PubMed  Google Scholar 

  15. Björndahl L (2010) The usefulness and significance of assessing rapidly progressive spermatozoa. Asian J Androl 12:33–35. doi:10.1038/aja.2008.50

    Article  PubMed Central  PubMed  Google Scholar 

  16. Eliasson R (2010) Semen analysis with regard to sperm number, sperm morphology and functional aspects. Asian J Androl 12:26–32. doi:10.1038/aja.2008.58

    Article  PubMed Central  PubMed  Google Scholar 

  17. Piomboni P, Focarelli R, Stendardi A, Ferramosca A, Zara V (2012) The role of mitochondria in energy production for human sperm motility. Int J Androl 35(2):109–124. doi:10.1111/j.1365-2605.2011.01218.x

    Article  CAS  PubMed  Google Scholar 

  18. Du Plessis SS, Agarwal A, Halabi J, Tvrda E (2015) Contemporary evidence on the physiological role of reactive oxygen species in human sperm function. J Assist Reprod Genet. doi:10.1007/s10815-014-0425-7

    PubMed  Google Scholar 

  19. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417(1):1–13. doi:10.1042/BJ20081386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Tvrdá E, Kňažická Z, Bárdos L, Massányi P, Lukáč N (2011) Impact of oxidative stress on male fertility—a review. Acta Vet Hung 59(4):465–484. doi:10.1556/AVet.2011.034

    Article  PubMed  Google Scholar 

  21. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. doi:10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

  22. Knazicka Z, Tvrda E, Bardos L, Lukac N (2012) Dose- and time-dependent effect of copper ions on the viability of bull spermatozoa in different media. J Environ Sci Health A 47:1294–1300. doi:10.1080/10934529.2012.672135

    Article  CAS  Google Scholar 

  23. Esfandiari N, Sharma RK, Saleh RA, Thomas AJ Jr, Agarwal A (2003) Utility of the nitroblue tetrazolium reduction test for assessment of reactive oxygen species production by seminal leukocytes and spermatozoa. J Androl 24:862–870. doi:10.1002/j.1939-4640.2003.tb03137.x

    CAS  PubMed  Google Scholar 

  24. Tvrdá E, Lukáč N, Lukáčová J, Kňažická Z, Massányi P (2013) Stimulating and protective effects of vitamin E on bovine spermatozoa. J Microbiol Biotechnol Food Sci 2:1386–1395

    Google Scholar 

  25. Lucesoli F, Caligiuri M, Roberti MF, Perazzo JC, Fraga CG (1999) Dose-dependent increase of oxidative damage in the testes of rats subjected to acute iron overload. Arch Biochem Biophys 372(1):37–43. doi:10.1006/abbi.1999.1476

    Article  CAS  PubMed  Google Scholar 

  26. Whittaker P, Dunkel VC, Bucci TJ, Kusewitt DF, Thurman JD, Warbritton A, Wolff GL (1997) Genome-linked toxic responses to dietary iron overload. Toxicol Pathol 25(6):556–564. doi:10.1177/019262339702500604

    Article  CAS  PubMed  Google Scholar 

  27. Rao LG, Guns E, Rao AV (2003) Lycopene: its role in human health and disease. AGROFood 2003:25–30

    Google Scholar 

  28. Aitken RJ, Buckingham D, Harkiss D (1993) Use of a xanthine oxidase free radical generating system to investigate the cytotoxic effects of reactive oxygen species on human spermatozoa. J Reprod Fertil 97(2):441–450. doi:10.1530/jrf.0.0970441

    Article  CAS  PubMed  Google Scholar 

  29. Halliwell B (2005) Free radicals and other reactive species in disease. eLS. doi:10.1038/npg.els.0003913

    Google Scholar 

  30. de Lamirande E, Gagnon C (1992) Reactive oxygen species and human spermatozoa. I. Effects on the motility of intact spermatozoa and on sperm axonemes. J Androl 13(5):368–378. doi:10.1002/j.1939-4640.1992.tb03327.x

    PubMed  Google Scholar 

  31. Baumber J, Ball BA, Gravance CG, Medina V, Davies-Morel MC (2000) The effect of reactive oxygen species on equine sperm motility, viability, acrosomal integrity, mitochondrial membrane potential, and membrane lipid peroxidation. J Androl 21(6):895–902. doi:10.1002/j.1939-4640.2000.tb03420.x

    CAS  PubMed  Google Scholar 

  32. Mojica-Villegas MA, Izquierdo-Vega JA, Chamorro-Cevallos G, Sanchez-Guiterrez M (2014) Protective effect of resveratrol on biomarkers of oxidative stress induced by iron/ascorbate in mouse spermatozoa. Nutrients 6(2):489–503. doi:10.3390/nu6020489

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Sharp P (2004) The molecular basis of copper and iron interactions. Proc Nutr Soc 63(4):563–569. doi:10.1079/PNS2004386

    Article  CAS  PubMed  Google Scholar 

  34. Griveau JF, Dumont E, Renard P, Callegari JP, Le Lannou D (1995) Reactive oxygen species, lipid peroxidation and enzymatic defence systems in human spermatozoa. J Reprod Fertil 103(1):17–26

    Article  CAS  PubMed  Google Scholar 

  35. Silva EC, Cajueiro JF, Silva SV, Soares PC, Guerra MM (2012) Effect of antioxidants resveratrol and quercetin on in vitro evaluation of frozen ram sperm. Theriogenology 77(8):1722–1726. doi:10.1016/j.theriogenology.2011.11.023

    Article  CAS  PubMed  Google Scholar 

  36. Knazicka Z, Zs F, Lukacova J, Gren A, Lukac N (2013) Effects of iron on the steroidogenesis of human adrenocarcinoma (nci-h295r) cell line in vitro. Endocr Abstr 31:304. doi:10.1530/endoabs.31.P304

    Google Scholar 

  37. Lane M, Thérien I, Moreau R, Manjunath P (1999) Heparin and high-density lipoprotein mediate bovine sperm capacitation by different mechanisms. Biol Reprod 60(1):169–175. doi:10.1095/biolreprod60.1.169

    Article  CAS  PubMed  Google Scholar 

  38. Aitken RJ, Baker MA, Sawyer D (2003) Oxidative stress in the male germ line and its role in the aetiology of male infertility and genetic disease. Reprod Biomed Online 7(1):65–70. doi:10.4103/1008-682X.122203

    Article  CAS  PubMed  Google Scholar 

  39. Aitken RJ, Jones KT, Robertson SA (2012) Reactive oxygen species—in sickness and in health. J Androl 33(6):1096–1106

    Article  CAS  PubMed  Google Scholar 

  40. Rudeck M, Volk T, Sitte N, Grune T (2000) Ferritin oxidation in vitro: implication of iron release and degradation by the 20S proteasome. IUBMB Life 49(5):451–456

    Article  CAS  PubMed  Google Scholar 

  41. MacKenzie EL, Iwasaki K, Tsuji Y (2008) Intracellular iron transport and storage: from molecular mechanisms to health implications. Antioxid Redox Signal 10(6):997–1030. doi:10.1089/ars.2007.1893

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Reddy S, Aggarwal BB (1994) Curcumin is a non-competitive and selective inhibitor of phosphorylase kinase. FEBS Lett 341(1):19–22

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was co-funded by the European Community under the Project no. 26220220180: Building Research Centre “AgroBioTech”, by the Scientific Grant Agency of the Ministry of Education of the Slovak Republic and of the Slovak Academy of Sciences VEGA Project no. 1/0857/14, and by the Slovak Research and Development Agency Grant no. APVV-0304-12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Tvrdá.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tvrdá, E., Lukáč, N., Lukáčová, J. et al. Dose- and Time-Dependent In Vitro Effects of Divalent and Trivalent Iron on the Activity of Bovine Spermatozoa. Biol Trace Elem Res 167, 36–47 (2015). https://doi.org/10.1007/s12011-015-0288-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0288-5

Keywords

Navigation