Skip to main content
Log in

Effects of vitamin C, vitamin E, selenium, zinc, or their nanoparticles on camel epididymal spermatozoa stored at 4 °C

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

This study determined the effects of antioxidant supplementation and storage time at cool temperatures on the characteristics of epididymal camel spermatozoa. Camel testes were collected at the abattoir after animal slaughtering and kept at 4 °C during transportation and until processing (max 6 h). Spermatozoa were retrieved and diluted with SHOTOR extender, split in aliquots, supplemented with the following antioxidants: 200 μm/mL vitamin E, 1.0 g/L vitamin C, 1 μg/mL selenium nanoparticles, 50 μg/mL zinc nanoparticles, 2 μg/mL sodium selenite, and 100 μg/mL zinc sulfate, and stored at 4 °C for 2, 48, 96, and 144 h. The storage time significantly affected (P < 0.05) the sperms’ motility and livability, the sperms’ membrane integrity, and the percentages of cytoplasmic droplets as well as the percentage of morphologically normal spermatozoa. Epididymal sperm characteristics (progressive motility, livability, membrane integrity, and abnormalities) were significantly improved (P < 0.05) when the spermatozoa were diluted with antioxidants as compared with the control group, and the best additives were identified as nano-selenium, sodium selenite, nano-zinc, and zinc sulfate. In conclusion, adding nano-sized minerals or inorganic trace elements and vitamins maintained the progressive motility, livability, and membrane integrity, and decreased abnormalities and cytoplasmic droplet percentages of epididymal camel spermatozoa stored at 4 °C up to 144 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdelkhalek, A., Gabr, S.A., Khalil, W., Shamiah, S., Pan, L., Qin, G., and Farouk, M., 2017. In vitro production of Sudanese camel (Camelus dromedarius) embryos from epididymal spermatozoa and follicular oocytes of slaughtered animals, Polish Journal of Veterinary Sciences, 20, 95-101

    Article  CAS  PubMed  Google Scholar 

  • Afifi, M., and Abdelazim, A.M., 2015. Ameliorative effect of zinc oxide and silver nanoparticles on antioxidant system in the brain of diabetic rats, Asian Pacific Journal of Tropical Biomedicine, 5, 874-877

    Article  CAS  Google Scholar 

  • Al-Bulushi, S., Manjunatha, B., Bathgate, R., Rickard, J., and de Graaf, S., 2019. Liquid storage of dromedary camel semen in different extenders, Animal Reproduction Science, 207, 95-106

    Article  CAS  PubMed  Google Scholar 

  • Ali, A., Derar, D.R., Alhassun, T.M., and Almundarij, T.I., 2020. Effect of Zinc, Selenium, and Vitamin E Administration on Semen Quality and Fertility of Male Dromedary Camels with Impotentia Generandi, Biological Trace Element Research, 1-7

  • Amidi, F., Pazhohan, A., Nashtaei, M.S., Khodarahmian, M., and Nekoonam, S., 2016. The role of antioxidants in sperm freezing: a review, Cell and tissue banking, 17, 745-756

    Article  CAS  PubMed  Google Scholar 

  • Badr, M., and Abdel-Malak, M.G., 2010. In vitro fertilization and embryo production in dromedary camel using epididymal spermatozoa, Global Veterinaria, 4, 271-276

    Google Scholar 

  • Bansal, A.K., and Bilaspuri, G.S., 2009. Antioxidant effect of vitamin E on motility, viability and lipid peroxidation of cattle spermatozoa under oxidative stress, Animal Science Papers and Reports, 27, 5-14

    CAS  Google Scholar 

  • Bansal, A.K., and Bilaspuri, G.S., 2011. Impacts of oxidative stress and antioxidants on semen functions, Veterinary Medicine International, 2011, 1-7

    Article  Google Scholar 

  • Barkhordari, A., Hekmatimoghaddam, S., Jebali, A., Khalili, M.A., Talebi, A., and Noorani, M., 2013. Effect of zinc oxide nanoparticles on viability of human spermatozoa, Iranian Journal of Reproductive Medicine, 11, 767-771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cholakkal, I.K., Koroth, A., and Sharifi, S.A., 2016. Observations on semen collection and suitability of different modifications of artificial vagina for dromedary camels (Camelus dromedarius), Journal of Camel Practice and Research, 23, 169-174

    Article  Google Scholar 

  • Dawson, E.B., Harris, W.A., Teter, M.C., and Powell, L.C., 1992. Effect of ascorbic acid supplementation on the sperm quality of smokers, Fertility and Sterility, 58, 1034-1039

    Article  CAS  PubMed  Google Scholar 

  • Dorostkar, K., Alavi-Shoushtari, S.M., and Mokarizadeh, A., 2012. Effects of in vitro selenium addition to the semen extender on the spermatozoa characteristics before and after freezing in water buffaloes (Bubalus bubalis), Veterinary Research Forum, 3, 263–268

    PubMed  PubMed Central  Google Scholar 

  • Duncan, B.D., 1955. Multiple range and multiple F-test. Biometrics, 11, 1-42

    Article  Google Scholar 

  • El-Harairy, M.A., Abd El-Razek, I.M., Abdel-Khalek, A.E., Shamiah, S.M., Zaghloul, H.K., and Khalil, W.A., 2016. Effect of antioxidants on the stored dromedary camel epididymal sperm characteristics, Asian Journal of Animal Sciences, 10, 147-153

    Article  CAS  Google Scholar 

  • Elwishy, A., 1988. Reproduction in the male dromedary (Camelus dromedarius): a review, Animal Reproduction Science, 17, 217-241

    Article  Google Scholar 

  • Eskiocak, S., Gozen, A.S., Yapar, S.B., Tavas, F., Kilic, A.S., and Eskiocak, M., 2005. Glutathione and free sulphydryl content of seminal plasma in healthy medical students during and after exam stress, Human Reproduction, 20, 2595-2600

    Article  CAS  PubMed  Google Scholar 

  • Foote, R.H., Brockett, C.C., and Kaproth, M.T., 2002. Motility and fertility of bull sperm in whole milk extender containing antioxidants, Animal Reproduction Science, 71, 13-23

    Article  CAS  PubMed  Google Scholar 

  • Hafez, E., and Hafez, B., 2001. Reproductive parameters of male dromedary and bactrian camels, Archives of Andrology, 46, 85-98

    Article  CAS  PubMed  Google Scholar 

  • Handy, R.D., Owen, R., and Valsami-Jones, E., 2008. The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs, Ecotoxicology, 17, 315-325

    Article  CAS  PubMed  Google Scholar 

  • Jeong, Y.-J., Kim, M.-K., Song, H.-J., Kang, E.-J., Ock, S.-A., Kumar, B.M., Balasubramanian, S., and Rho, G.-J., 2009. Effect of α-tocopherol supplementation during boar semen cryopreservation on sperm characteristics and expression of apoptosis related genes, Cryobiology, 58, 181-189

    Article  CAS  PubMed  Google Scholar 

  • Kadim, I.T., Mahgoub, O., and Purchas, R.W., 2008. A review of the growth, and of the carcass and meat quality characteristics of the one-humped camel (Camelus dromedaries), Meat Science, 80, 555-569

    Article  CAS  PubMed  Google Scholar 

  • Khalil, W., El-Harairy, M., Zeidan, A., and Hassan, M., 2019. Impact of selenium nano-particles in semen extender on bull sperm quality after cryopreservation, Theriogenology, 126, 121-127

    Article  CAS  PubMed  Google Scholar 

  • Khalil, W.A., Abdel-Khalek, A.-K.E., Falchi, L., El-Saidy, B.E., and Yousif, A.I., 2020. Effects of extender and packaging method on morphological and functional characteristics of cryopreserved Ossimi ram semen, Asian Pacific Journal of Reproduction, 9, 148-155

    Article  CAS  Google Scholar 

  • Kilian, I., Lubbe, K., Bartels, P., Friedmann, Y., and Denniston, R.S., 2000. Evaluating epididymal sperm of African wild ruminants: longevity when stored at 4 °C and viability following cryopreservation, Theriogenology, 53, 336

    Google Scholar 

  • Kotdawala, A.P., Kumar, S., Salian, S.R., Thankachan, P., Govindraj, K., Kumar, P., Kalthur, G., and Adiga, S.K., 2012. Addition of zinc to human ejaculate prior to cryopreservation prevents freeze-thaw-induced DNA damage and preserves sperm function, Journal of Assisted Reproduction and Genetics, 29, 1447-1453

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar, N., Verma, R.P., Singh, L.P., Varshney, V.P., and Dass, R.S., 2006. Effect of different levels and sources of zinc supplementation on quantitative and qualitative semen attributes and serum testosterone level in crossbred cattle (Bos indicus x Bos taurus) bulls, Reproduction Nutrition Development, 46, 663-675

    Article  CAS  PubMed  Google Scholar 

  • Marin-Guzman, J., Mahan, D.C., and Whitmoyer, R., 2000. Effect of dietary selenium and vitamin E on the ultrastructure and ATP concentration of boar spermatozoa, and the efficacy of added sodium selenite in extended semen on sperm motility, Journal of Animal Science, 78, 1544-1550

    Article  CAS  PubMed  Google Scholar 

  • Menon, A.G., Thundathil, J.C., Wilde, R., Kastelic, J.P., and Barkema, H.W., 2011. Validating the assessment of bull sperm morphology by veterinary practitioners, The Canadian Veterinary Journal, 52, 407-408

    PubMed  PubMed Central  Google Scholar 

  • Mir, S.S., Lone, F.A., Khan, M.Z., Malik, A.A., Islam, R., and Sofi, K.A., 2012. Effect of cold storage period on the quality of ram cauda epididymal spermatozoa recovered postmortem, Turkish Journal of Veterinary and Animal Sciences, 36, 683-687

    Google Scholar 

  • Monaco, D., and Lacalandra, G., 2020. Considerations for the development of a dromedary camel (Camelus dromedarius) semen collection centre, Animal Reproduction Science, 212, 1-10

    Article  Google Scholar 

  • Morton, K., Billah, M., and Skidmore, J., 2013. Effect of sperm diluent and dose on the pregnancy rate in dromedary camels after artificial insemination with fresh and liquid-stored semen, Journal of Camelid Science, 6, 49-62

    Google Scholar 

  • Moskovtsev, S.I., and Librach, C.L., 2013. Methods of sperm vitality assessment. Spermatogenesis, 2013, Springer, 13-19

  • Niasari-Naslaji, A., Mosaferi, S., Bahmani, N., Gharahdaghi, A.A., Abarghani, A., Ghanbari, A., and Gerami, A., 2006. Effectiveness of a tris-based extender (SHOTOR diluent) for the preservation of Bactrian camel (Camelus bactrianus) semen, Cryobiology, 53, 12-21

    Article  CAS  PubMed  Google Scholar 

  • Niki, E., 2014. Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence, Free Radical Biology and Medicine, 66, 3-12

    Article  CAS  PubMed  Google Scholar 

  • Panahi, F., Niasari-Naslaji, A., Seyedasgari, F., Ararooti, T., Razavi, K., and Moosavi-Movaheddi, A.A., 2017. Supplementation of tris-based extender with plasma egg yolk of six avian species and camel skim milk for chilled preservation of dromedary camel semen, Animal Reproduction Science, 184, 11-19

    Article  CAS  PubMed  Google Scholar 

  • Prasad, A.S., Bao, B., Beck, F.W.J., Kucuk, O., and Sarkar, F.H., 2004. Antioxidant effect of zinc in humans, Free Radical Biology and Medicine, 37, 1182-1190

    Article  CAS  PubMed  Google Scholar 

  • Pukazhenthi, B., Pelican, K., Wildt, D., and Howard, J., 1999. Sensitivity of domestic cat (Felis catus) sperm from normospermic versus teratospermic donors to cold-induced acrosomal damage, Biology of Reproduction, 61, 135-141

    Article  CAS  PubMed  Google Scholar 

  • Saadeldin, I.M., Moulavi, F., Swelum, A.A.-A., Khorshid, S.S., Hamid, H.-F., and Hosseini, S.M., 2020. Vitrification of camel oocytes transiently impacts mitochondrial functions without affecting the developmental potential after intracytoplasmic sperm injection and parthenogenetic activation, Environmental Science and Pollution Research, 27, 44604-44613

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Gutiérrez, M., García-Montalvo, E.A., Izquierdo-Vega, J.A., and Del Razo, L.M., 2007. Effect of dietary selenium deficiency on the in vitro fertilizing ability of mice spermatozoa. Proceedings of the VIIIth Conference of the International Society for Trace Element Research in Humans (ISTERH), the IXth Conference of the Nordic Trace Element Society (NTES), and the VIth Conference of the Hellenic Trace Element Society (HTES), 2007, Springer, 41-49

  • SAS, 2007. Statistical analysis System. Stat-user’s guid. Release 9.1.3. SAS Institute. Cary, NC, USA

    Google Scholar 

  • Saurabh, S.S., Sharma, P., and Gautam, V., 2018. Effect of ascorbic acid on preservability of spermatozoa of buffalo bull after storage of epididymis at temperature 4 °C and -196 °C, Journal of Entomology and Zoology Studies, 6, 1065-1070

    Google Scholar 

  • Scholkamy, T., El-Badry, D., and Mahmoud, K.G.M., 2016. Developmental competence of Dromedary camel oocytes fertilized in vitro by frozen-thawed ejaculated and epididymal spermatozoa, Iranian Journal of Veterinary Research, 17, 253-258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shahin, M.A., Khalil, W.A., Saadeldin, I.M., Swelum, A.A.-A., and El-Harairy, M.A., 2020. Comparison between the effects of adding vitamins, trace elements, and nanoparticles to shotor extender on the cryopreservation of dromedary camel epididymal spermatozoa, Animals, 10, 1-16

    Article  Google Scholar 

  • Sikka, S.C., 2004. Role of oxidative stress and antioxidants in andrology and assisted reproductive technology, Journal of andrology, 25, 5-18

    Article  CAS  PubMed  Google Scholar 

  • Skidmore, J., Morton, K., and Billah, M., 2013. Artificial insemination in dromedary camels, Animal Reproduction Science, 136, 178-186

    Article  CAS  PubMed  Google Scholar 

  • Storey, B.T., 1997. Biochemistry of the induction and prevention of lipoperoxidative damage in human spermatozoa, Molecular Human Reproduction, 3, 203-213

    Article  CAS  PubMed  Google Scholar 

  • Swelum, A.A., Saadeldin, I.M., Ba-Awadh, H., Alowaimer, A.N. 2018a. Effects ofmelatonin implants on the reproductive performance and endocrine function of camel (Camelus dromedarius) bulls during the non-breeding and subsequent breeding seasons. Theriogenology 119, 18–27.

    Article  Google Scholar 

  • Swelum, A.A., Saadeldin, I.M., Ba-Awadh, H., Alowaimer, A.N. 2018b. Shortened daily photoperiod during the non-breeding season can improve the reproductive performance of camel bulls (Camelus dromedarius). Animal Reproduction Science 195, 334–344.

    Article  CAS  PubMed  Google Scholar 

  • Swelum, A.A., Saadeldin, I.M., Ba-Awadh, H., Al-Mutary, M., Alowaimer, A.N. 2019a. Effect of short artificial lighting and low temperature in housing rooms during non-rutting season on reproductive parameters of male dromedary camels. Theriogenology 131, 133–139.

    Article  PubMed  Google Scholar 

  • Swelum, A.A., Saadeldin, I.M., Ba-Awadh, H., Al-Mutary, M.G., Moumen, A.F., Alowaimer, A.N., Abdalla, H. 2019b. Efficiency of Commercial Egg Yolk-Free and Egg Yolk-Supplemented Tris-Based Extenders for Dromedary Camel Semen Cryopreservation. Animals 9, 999.

    Article  Google Scholar 

  • Tatone, C., Di Emidio, G., Vento, M., Ciriminna, R., and Artini, P.G., 2010. Cryopreservation and oxidative stress in reproductive cells, Gynecological Endocrinology, 26, 563-567

    Article  PubMed  Google Scholar 

  • Taylor, K., Roberts, P., Sanders, K., and Burton, P., 2009. Effect of antioxidant supplementation of cryopreservation medium on post-thaw integrity of human spermatozoa, Reproductive Biomedicine Online, 18, 184-189

    Article  PubMed  Google Scholar 

  • Ursini, F., Heim, S., Kiess, M., Maiorino, M., Roveri, A., Wissing, J., and Flohé, L., 1999. Dual function of the selenoprotein PHGPx during sperm maturation, Science, 285, 1393-1396

    Article  CAS  PubMed  Google Scholar 

  • Waheed, M.M., Al-Eknah, M.M., and El-Bahr, S.M., 2011. Some biochemical characteristics and preservation of epididymal camel spermatozoa (Camelus dromedarius), Theriogenology, 76, 1126-1133

    Article  CAS  PubMed  Google Scholar 

  • Waheed, M.M., Meligy, A.M., and Dhalam, S.A., 2018. The relationship between seminal plasma and serum trace elements and semen parameters of dromedary camels (Camelus dromedarius), Reproduction in Domestic Animals, 53, 1367-1374

    Article  CAS  PubMed  Google Scholar 

  • Wani, N., 2009. In vitro embryo production in camel (Camelus dromedarius) from in vitro matured oocytes fertilized with epididymal spermatozoa stored at 4 °C, Animal Reproduction Science, 111, 69-79

    Article  CAS  PubMed  Google Scholar 

  • Wani, N.A., and Hong, S., 2018. Intracytoplasmic sperm injection (ICSI) of in vitro matured oocytes with stored epididymal spermatozoa in camel (Camelus dromedarius): Effect of exogenous activation on in vitro embryo development, Theriogenology, 113, 44-49

    Article  CAS  PubMed  Google Scholar 

  • Zhu, Z., Fan, X., Lv, Y., Zhang, N., Fan, C., Zhang, P., and Zeng, W., 2015. Vitamin E analogue improves rabbit sperm quality during the process of cryopreservation through its antioxidative action, PloS one, 10, 1-16

    Article  Google Scholar 

Download references

Funding

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group no. (RG-1438-018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wael A. Khalil or Islam M. Saadeldin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Camelids

Guest Editor: Bernard Faye

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahin, M.A., Khalil, W.A., Saadeldin, I.M. et al. Effects of vitamin C, vitamin E, selenium, zinc, or their nanoparticles on camel epididymal spermatozoa stored at 4 °C. Trop Anim Health Prod 53, 86 (2021). https://doi.org/10.1007/s11250-020-02521-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11250-020-02521-1

Keywords

Navigation