Skip to main content

Advertisement

Log in

Comparison of the Biological Impacts of the Fluoride Compounds by Graphical Risk Visualization Map Technique

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Various fluoride compounds are widely used in industry. The present risk assessment study was conducted using a series of inorganic binary fluorides of the type XFn, where Xn = Na+, K+, Li+, Mg2+, Ca2+, Sr2+, Ba2+, Al3+, Nd3+, La3+, Ce3+, Sm3+, Gd3+, Y3+, Yb2+, and Zn2+. The aqueous solutions of these salts were orally administrated to 16 experimental groups (one for each of the salts tested). The levels of fluoride, N-acetyl-β-d-glucosaminidase in cumulative 24-h urine samples and creatinine clearance were measured to assess possible acute renal damages. The levels of fluoride, alanine aminotransferase, and aspartate aminotransferase were also determined in serum samples to assess possible acute hepatic damages. The results reveal that sodium fluoride (NaF), potassium fluoride (KF), and zinc fluoride tetrahydrate (ZnF2 .4H2O) can carry the fluoride ion into the bloodstream and that it is excreted via urine more readily than the other compounds tested. These fluorides were assigned the highest risk impact factor. Most of the rare earth fluorides are insoluble in water while those groups 2 and 13 of the periodic table are slightly soluble, so that they do not have a significant negative risk. These findings suggest that the biological impact of fluoride depends on the accompanying counter ion and its solubility. The risk map obtained in the present study shows that the graphical visualization map technique employed is a valuable new tool to assess the toxicological risk of chemical compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

LiF:

Lithium fluoride

NaF:

Sodium fluoride

KF:

Potassium fluoride

MgF2 :

Magnesium fluoride

CaF2 :

Calcium fluoride

SrF2 :

Strontium fluoride

BaF2 :

Barium fluoride

ZnF2 :

Zinc fluoride tetrahydrate

AlF3 :

Aluminum fluoride

LaF3 :

Lanthanum fluoride

CeF3 :

Cerium fluoride

NdF3 :

Neodymium fluoride

SmF3 :

Samarium fluoride

GdF3 :

Gadolinium fluoride

YF3 :

Yttrium fluoride

YbF2 :

Ytterbium fluoride

References

  1. White BA, Gordon SM (2014) Preventing dental caries through community water fluoridation. N C Med J 75:430–431

    PubMed  Google Scholar 

  2. Shashi A, Bhardwaj M (2011) Study on blood biochemical diagnostic indices for hepatic function biomarkers in endemic skeletal fluorosis. Biol Trace Elem Res 143:803–814

    Article  CAS  PubMed  Google Scholar 

  3. Varol E, Varol S (2012) Does fluoride toxicity cause hypertension in patients with endemic fluorosis? Biol Trace Elem Res 150:1–2

    Article  PubMed  Google Scholar 

  4. Dote T, Kono K, Usuda K, Shimizu H, Kawasaki T, Dote E (2003) Lethal inhalation exposure during maintenance operation of a hydrogen fluoride liquefying tank. Toxicol Ind Health 19:51–54

    Article  PubMed  Google Scholar 

  5. Marthaler TM (2013) Salt fluoridation and oral health. Acta Med Acad 42:140–155

    Article  PubMed  Google Scholar 

  6. Rugg-Gunn A, Bánóczy J (2013) Fluoride toothpastes and fluoride mouthrinses for home use. Acta Med Acad 42:168–178

    Article  PubMed  Google Scholar 

  7. Dang H, Mailig M, Lalic G (2014) Mild copper-catalyzed fluorination of alkyl triflates with potassium fluoride. Angew Chem Int Ed Engl 53:6473–6476

    Article  CAS  PubMed  Google Scholar 

  8. Ye Y, Schimler SD, Hanley PS, Sanford MS (2013) Cu(OTf)2-mediated fluorination of aryltrifluoroborates with potassium fluoride. J Am Chem Soc 135:16292–16295

    Article  CAS  PubMed  Google Scholar 

  9. Burnett JH, Gupta R, Griesmann U (2002) Absolute refractive indices and thermal coefficients of CaF2, SrF2, BaF2, and LiF near 157 nm. Appl Opt 41:2508–2513

    Article  CAS  PubMed  Google Scholar 

  10. Ansari AA, Singh SP, Singh N, Malhotra BD (2012) Synthesis of optically active silica-coated NdF3 core-shell nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 86:432–436

    Article  CAS  PubMed  Google Scholar 

  11. Lee CC, Liao BH, Liu MC (2008) Developing new manufacturing methods for the improvement of AlF3 thin films. Opt Express 16:6904–6909

    Article  CAS  PubMed  Google Scholar 

  12. Kono K, Yoshida Y, Watanabe M, Orita Y, Dote T, Bessho Y (1993) Urine, serum and hair monitoring of hydrofluoric acid workers. Int Arch Occup Environ Health 65:S95–S98

    Article  CAS  PubMed  Google Scholar 

  13. Kono K, Yoshida Y, Watanabe M, Tanioka Y, Orita Y, Dote T et al (1992) Serum fluoride as an indicator of occupational hydrofluoric acid exposure. Int Arch Occup Environ Health 64:343–346

    Article  CAS  PubMed  Google Scholar 

  14. Usuda K, Kono K, Dote T, Nishiura H, Tagawa T (1999) Usefulness of the assessment of urinary enzyme leakage in monitoring acute fluoride nephrotoxicity. Arch Toxicol 73:346–351

    Article  CAS  PubMed  Google Scholar 

  15. Usuda K, Kono K, Dote T, Nishiura K, Miyata K, Nishiura H et al (1998) Urinary biomarkers monitoring for experimental fluoride nephrotoxicity. Arch Toxicol 72:104–109

    Article  CAS  PubMed  Google Scholar 

  16. Saito N, Sasaki K, Nakatome K, Harada K, Yoshinaga T, Koizumi A (2003) Perfluorooctane sulfonate concentrations in surface water in Japan. Arch Environ Contam Toxicol 45:149–158

    Article  CAS  PubMed  Google Scholar 

  17. Moffatt C, Appuhamy R, Andrew W, Wynn S, Roberts J, Kennedy K (2014) An assessment of risk posed by a Campylobacter-positive puppy living in an Australian residential aged-care facility. W Pac Surveill Response J 5:1–6

    Article  Google Scholar 

  18. Tziaferi SG, Sourtzi P, Kalokairinou A, Sgourou E, Koumoulas E, Velonakis E (2011) Risk assessment of physical hazards in Greek hospitals combining staff’s perception, experts’ evaluation and objective measurements. Saf Health Work 2:260–272

    Article  PubMed Central  PubMed  Google Scholar 

  19. Russ K (2010) Risk assessment in the UK health and safety system: theory and practice. Saf Health Work 1:11–18

    Article  PubMed Central  PubMed  Google Scholar 

  20. Usuda K, Kono K, Shimbo Y, Fujihara M, Fujimoto K, Kawano A et al (2007) Urinary fluoride reference values determined by a fluoride ion selective electrode. Biol Trace Elem Res 119:27–34

    Article  CAS  PubMed  Google Scholar 

  21. Usuda K, Kono K, Dote T, Watanabe M, Shimizu H, Tanimoto Y et al (2007) An overview of boron, lithium, and strontium in human health and profiles of these elements in urine of Japanese. Environ Health Prev Med 12:231–237

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Wiese J, Klug E (1989) Poisoning with a wood preservative. Beitr Gerichtl Med 47:103–106

    CAS  PubMed  Google Scholar 

  23. Spoor NL (1968) The toxicity of lithium fluoride. Ann Occup Hyg 11:23–25

    Article  CAS  PubMed  Google Scholar 

  24. Panneerselvam L, Subbiah K, Arumugam A, Senapathy JG (2013) Ferulic acid modulates fluoride-induced oxidative hepatotoxicity in male Wistar rats. Biol Trace Elem Res 151:85–91

    Article  CAS  PubMed  Google Scholar 

  25. He H, Wang H, Han M, Jiao Y, Ma C, Zhang H et al (2014) Study on changes of clinical indicators and key proteins from fluoride exposure. Biol Trace Elem Res 160:73–78

    Article  CAS  PubMed  Google Scholar 

  26. Moss DW, Henderson AR (1996) In: Tietz NW (ed) Enzymes in: Tietz fundamental of clinical chemistry, 4th edn. W. B. Sounders company, Philadalphia, pp 283–335

    Google Scholar 

Download references

Acknowledgments

The Japan Society for the Promotion of Science supported this study through a Grant-in-Aid for Scientific Research (JSPS KAKENHI) for scientific research (C) Number 25460822.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kan Usuda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usuda, K., Kono, R., Ueno, T. et al. Comparison of the Biological Impacts of the Fluoride Compounds by Graphical Risk Visualization Map Technique. Biol Trace Elem Res 167, 84–90 (2015). https://doi.org/10.1007/s12011-015-0278-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0278-7

Keywords

Navigation