Skip to main content
Log in

Assessment of Essential Elements and Heavy Metals Content on Mytilus galloprovincialis from River Tagus Estuary

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Trace elemental content was analysed in edible tissues of Mytilus galloprovincialis collected in five different sampling areas near the mouth of river Tagus estuary in Lisbon. The concentrations of essential elements (S, K, Ca, Fe, Cu, Zn, As, Br and Sr) were determined by energy-dispersive X-ray fluorescence (EDXRF) spectrometry, while toxic elements (Cr, Cd, Hg, Se and Pb) were measured by inductively coupled plasma-atomic emission spectrometry (ICP-AES). The results show that the essential elements K and S are present at the highest concentrations in all the studied samples reaching 2,920 and 4,520 μg g−1 (fresh weight), respectively. The highest levels of heavy metals found were in two areas close to the city for Pb and Cd, but below the maximum allowed values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arellano JM, Ortiz JB, Da Silva DC, De Canales MG, Sarasquete C, Blasco J (1999) Levels of copper, zinc, manganese and iron in two fish species from salt marshes of Cadiz Bay (southwest Iberian Peninsula). Bol Inst Esp Oceanogr 15:485–488

    Google Scholar 

  2. Massadeh A, Al-Sharif L, Dalale’H R, Hassan M (2006) Analysis of lead levels in local Jordanian and imported sheep meat and organs using atomic absorption spectrometry. Environ Monit Assess 115:87–93

    Article  CAS  PubMed  Google Scholar 

  3. Massadeh AM, Al-Momani FA, Haddad HI (2005) Removal of lead and cadmium by halophilic bacteria isolated from the dead sea shore, Jordan. Biol Trace Elem Res 108:259–269

    Article  CAS  PubMed  Google Scholar 

  4. Alomary A, Al-Momani IF, Obeidat SM, Massadeh AM (2012) Levels of lead, cadmium, copper, iron, and zinc in deciduous teeth of children living in Irbid, Jordan by ICP-OES: some factors affecting their concentrations. Environ Monit Assess 185:3283–3295

    Article  PubMed  Google Scholar 

  5. Polak-Juszczak L (2009) Temporal trends in the bioaccumulation of trace metals in herring, sprat, and cod from the southern Baltic Sea in the 1994–2003 period. Chemosphere 76:1334–1339

    Article  CAS  PubMed  Google Scholar 

  6. Shinn C, Dauba F, Grenouillet G, Guenard G, Lek S (2009) Temporal variation of heavy metal contamination in fish of the river lot in southern France. Ecotoxicol Environ Saf 72:1957–1965

    Article  CAS  PubMed  Google Scholar 

  7. Jović M, Stanković A, Slavković-Beskoski L, Tomić I, Degetto S, Stanković S (2011) Mussels as a bio-indicator of the environmental quality of the coastal water of the Boka Kotorska bay (Montenegro). J Serb Chem Soc 76:933–946

    Article  Google Scholar 

  8. Dahl L, Molin M, Amlund H, Meltzer HM, Julshamn K, Alexander J, Sloth JJ (2010) Stability of arsenic compounds in seafood samples during processing and storage by freezing. Food Chem 123:720–727

    Article  CAS  Google Scholar 

  9. Joksimovic D, Tomić I, Stankovic AR, Jović M, Stanković S (2011) Trace metal concentrations in Mediterranean blue mussel and surface sediments and evaluation of the mussels quality and possible risks of high human consumption. Food Chem 127:632–637

    Article  CAS  PubMed  Google Scholar 

  10. WHO (1996) Trace elements in human nutrition and health—part A. 1–178

  11. Bogden JD, Klevay LM (2000) Clinical nutrition of the essential trace elements and minerals. Springer Science + Business Media, New York

    Book  Google Scholar 

  12. Boyd LO, Allan SR (1997) Handbook of nutritionally essential mineral elements. CRC Press

  13. Singh R, Gautam N, Mishra A, Gupta R (2011) Heavy metals and living systems: an overview. Indian J Pharmacol 43:246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Liu X-R, Li J-H, Zhang Y, Ge Y-S, Tian F-F, Dai J, Jiang F-L, Liu Y (2011) Mitochondrial permeability transition induced by different concentrations of zinc. J Membrane Biol 244:105–112

    Article  CAS  Google Scholar 

  15. Li J, Zhang Y, Xiao Q, Tian F, Liu X, Li R, Zhao G, Jiang F, Liu Y (2011) Journal of hazardous materials. J Hazard Mater 194:440–444

    Article  CAS  PubMed  Google Scholar 

  16. Boran M, Altinok I (2010) A Review of heavy metals in water, sediment and living organisms in the Black Sea. Turk J Fish Aquat Sci 10:565–572

    Article  Google Scholar 

  17. França S, Vinagre C, Caçador I, Cabral HN (2005) Heavy metal concentrations in sediment, benthic invertebrates and fish in three salt marsh areas subjected to different pollution loads in the Tagus estuary (Portugal). Mar Pollut Bull 50:998–1003

    Article  PubMed  Google Scholar 

  18. IPQ (1988) Portuguese regulations NP 2032, and NP 2928.

  19. Custodio PJ, Carvalho ML, Nunes F (2003) Trace elements determination by energy dispersive X-ray fluorescence (EDXRF) in human placenta and membrane: a comparative study. Anal Bioanal Chem 375:1101–1106

    CAS  PubMed  Google Scholar 

  20. Costa PM, Repolho T, Caeiro S, Diniz ME, Moura I, Costa MH (2008) Modelling metallothionein induction in the liver of Sparus aurata exposed to metal-contaminated sediments. Ecotoxicol Environ Saf 71:117–124

    Article  CAS  PubMed  Google Scholar 

  21. Manso M, Carvalho ML, Nunes ML (2007) Characterization of essential and toxic elements in cephalopod tissues by EDXRF and AAS. X-Ray Spectrom 36:413–418

    Article  CAS  Google Scholar 

  22. Türkmen M, Türkmen A, Tepe Y, Töre Y, Ateş A (2009) Determination of metals in fish species from Aegean and Mediterranean seas. Food Chem 113:233–237

    Article  Google Scholar 

  23. Markovic J, Joksimovic D, Stanković S (2012) Trace element concentrations in wild mussels from the coastal area of the southeastern Adriatic, Montenegro. Arch biol sci (Beogr) 64:265–275

    Article  Google Scholar 

  24. Comission E (2006) EC 1881–2006, setting maximum levels for certain contaminants in foodstuffs. Off J Eur Union 12:364–388

    Google Scholar 

  25. Duarte B, Caçador I (2012) Particulate metal distribution in Tagus estuary (Portugal) during a flood episode. Mar Pollut Bull 64:2109–2116

    Article  CAS  PubMed  Google Scholar 

  26. Giusti L, Williamson AC, Mistry A (1999) Biologically available trace metals in Mytilus edulis from the coast of Northeast England. Environ Int 25:969–981

    Article  CAS  Google Scholar 

  27. Mubiana VK, Qadah D, Meys J, Blust R (2005) Temporal and spatial trends in heavy metal concentrations in the marine mussel Mytilus edulis from the Western Scheldt estuary (The Netherlands). Hydrobiologia 540:169–180

    Article  CAS  Google Scholar 

  28. Raimundo J, Pereira P, Caetano M, Cabrita MT, Vale C (2011) Decrease of Zn, Cd and Pb concentrations in marine fish species over a decade as response to reduction of anthropogenic inputs: the example of Tagus estuary. Mar Pollut Bull 62:2854–2858

    Article  CAS  PubMed  Google Scholar 

  29. Gillikin DP, Gillikin DP, Lorrain A et al (2005) Strong biological controls on Sr/Ca ratios in aragonitic marine bivalve shells. Geochemistry 6:1–16

    Google Scholar 

  30. Stoll HM, Schrag DP (2001) Sr/Ca variations in Cretaceous carbonates: relation to productivity and sea level changes. Palaeogeogr Palaeoclimatol Palaeoecol 168:311–336

    Article  Google Scholar 

  31. Mubiana VK, Qadah D, Meys J, Blust R (2005) Temporal and spatial trends in heavy metal concentrations in the marine mussel Mytilus edulis from the Western Scheldt estuary (The Netherlands). Hydrobiologia 540:169–180

    Article  CAS  Google Scholar 

  32. Przytarska JE, Sokołowski A, Wołowicz M, Hummel H, Jansen J (2009) Comparison of trace metal bioavailabilities in European coastal waters using mussels from Mytilus edulis complex as biomonitors. Environ Monit Assess 166:461–476

    Article  PubMed  Google Scholar 

  33. Mehdi Y, Hornick J-L, Istasse L, Dufrasne I (2013) Selenium in the environment, metabolism and involvement in body functions. Molecules 18:3292–3311

    Article  CAS  PubMed  Google Scholar 

  34. Chen RW, Whanger PD, Weswig PH (1975) Selenium - induced redistribution of cadmium binding to tissue proteins: a possible mechanism of protection against cadmium toxicity. Bioinorg Chem 4:125–133

    Article  CAS  PubMed  Google Scholar 

  35. Toman R, Golian J, Šiška B, Massányi P, Lukáč N (2009) Cadmium and selenium in animal tissues and their interactions after an experimental administration to rats. Slovak J Anim Sci 42:115–118

    Google Scholar 

  36. Rayman MP (2007) The use of high-selenium yeast to raise selenium status: how does it measure up? Br J Nutr 92:557

    Article  Google Scholar 

  37. Hemelraad J, Holwerda DA, Wijnne HJA, Zandee DI (1990) Effects of cadmium in freshwater clams. I. Interaction with essential elements in Anodonta cygnea. Arch Environ Contam Toxicol 19:686–690

    Article  CAS  PubMed  Google Scholar 

  38. Pappas AC, Zoidis E, Georgiou CA, Demiris N, Surai PF, Fegeros K (2011) Influence of organic selenium supplementation on the accumulation of toxic and essential trace elements involved in the antioxidant system of chicken. Food Additives & Contaminants: Part A 28:446–454

    Article  CAS  Google Scholar 

  39. Patro L (2007) Tox-effects of cadmium chloride on metal ion concentration of a fresh water fish, oreochromis mossambicus,(PETERS). Journal of Environmental Researh And Development 1:232–240

    CAS  Google Scholar 

  40. Larsson Å, Bengtsson BE, Haux C (1981) Disturbed ion balance in flounder, Platichthys flesus L. exposed to sublethal levels of cadmium. Aquat Toxicol 1:19–35

    Article  CAS  Google Scholar 

  41. Vale C (1990) Temporal variations of particulate metals in the Tagus River estuary. Sci Total Environ 97–98:137–154

    Article  Google Scholar 

  42. Vale C, Canário J, Caetano M, Lavrado J, Brito P (2008) Estimation of the anthropogenic fraction of elements in surface sediments of the Tagus estuary (Portugal). Mar Pollut Bull 56:1364–1367

    Article  CAS  PubMed  Google Scholar 

  43. Diniz MS (2000) Estudo da evolução de concentrações de metais (Cu, Cd e Zn) e de metalotionina em Mytilus galloprovincialis (Lamarck, 1819) transplantados para o estuário do rio Tejo. M.Sc. Thesis, Lisboa

    Google Scholar 

  44. Freitas PS, Clarke LJ, Kennedy H, Richardson CA, Abrantes F (2006) Environmental and biological controls on elemental (Mg/Ca, Sr/Ca and Mn/Ca) ratios in shells of the king scallop Pecten maximus. Geochim Cosmochim Acta 70:5119–5133

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, I., Diniz, M.S., Carvalho, M.L. et al. Assessment of Essential Elements and Heavy Metals Content on Mytilus galloprovincialis from River Tagus Estuary. Biol Trace Elem Res 159, 233–240 (2014). https://doi.org/10.1007/s12011-014-9974-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-9974-y

Keywords

Navigation