Skip to main content

Advertisement

Log in

Effect of Iodine Excess on Th1, Th2, Th17, and Treg Cell Subpopulations in the Thyroid of NOD.H-2h4 Mice

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Iodine is an indispensable micronutrient for thyroid hormone synthesis and metabolism. Iodine excess may trigger and exacerbate autoimmune thyroiditis (AIT). The pathogenetic mechanism of iodine excess-induced AIT is partly regarded as T helper type 1 (Th1) cell and/or T helper type 17 (Th17) cell dominant autoimmune disease. It is still unknown whether other cluster of differentiation 4+ T (CD4+T) cell subpopulations are involved. Therefore, we studied the profile of all the CD4+T cell subpopulations of the thyroid in iodine excess-induced nonobese diabetic-H2h4 (NOD.H-2h4) mice to explore the potential immunologic mechanism of iodine excess-induced AIT. A total of 40 healthy 8-week-old NOD.H-2h4 mice were randomly allocated into the normal group (NG, n = 20) and the test group (TG, n = 20), which were fed with double-distilled water and 0.05 % sodium iodine (NaI) for 8 weeks, respectively. Compared to the NG, in the TG, the incidence of AIT was significantly higher, the expressions of interleukin-17 (IL-17), interleukin-23 (IL-23), interleukin-6 (IL-6), and transforming growth factor-β (TGF-β) remarkably increased by immunohistochemistry, which were further verified by reverse transcription polymerase chain reaction (RT-PCR), while the protein and mRNA expressions of interleukin-4 (IL-4) and interferon-γ (INF-γ) decreased markedly. In the AIT mice, the expressions of retinoic acid-related orphan receptor gamma t (RORγt), retinoic acid-related orphan receptor alpha (RORα), and signal transducer and activator of transcription 3 (STAT3) were much higher, the expression of forkhead/winged helix transcription factor p3 (Foxp3) significantly lower by western blot, and the proportion of Th17 cells by flow cytometry method (FCM) much larger compared to those of the NG group. In conclusion, Th17 cells may promote an inflammatory reaction in the development of iodine-excess-induced AIT, which is negatively regulated by Th1, T helper type 2 (Th2), and regulatory T (Treg) cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Braverman LE, Utiger RD (2000) Werner & Ingbar’s the thyroid: A fundamental and clinical text. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  2. Burek CL, Talor MV (2009) Environmental triggers of autoimmune thyroiditis. J Autoimmun 33:183–189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Allen EM, Appel MC, Braverman LE (1986) The effect of iodide ingestion on the development of spontaneous lymphocytic thyroiditis in the diabetes-prone BB/W rat. Endocrinology 118:1977–1981

    Article  CAS  PubMed  Google Scholar 

  4. Rasooly L, Burek CL, Rose NR (1996) Iodine-induced autoimmune thyroiditis in NOD-H-2h4 mice. Clin Immunol Immunopathol 81:287–292

    Article  CAS  PubMed  Google Scholar 

  5. Teng W, Shan Z, Teng X et al (2006) Effect of iodine intake on thyroid diseases in China. N Engl J Med 354(26):2783–2793

    Article  CAS  PubMed  Google Scholar 

  6. Bastemir M, Emral R, Erdogan G et al (2006) High prevalence of thyroid dysfunction and autoimmune thyroiditis in adolescents after elimination of iodine deficiency in the Eastern Black Sea Region of Turkey[J]. Thyroid 16(12):1265–1271

    Article  CAS  PubMed  Google Scholar 

  7. Yu S, Sharp GC, Braley-Mullen H (2002) Dual role for IFN-γ, but not for IL-4, in spontaneous autoimmune thyroiditis on NOD.H-2h4 mice. J Immunol 169:3999–4007

    Article  CAS  PubMed  Google Scholar 

  8. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, Wang Y, Hood L, Zhu Z, Tian Q, Dong C (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing intereleukin-17. Nat Immunol 6:1133–1141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Paradowska A, Maślińiski W, Grzybowska-Kowalczyk A, Łacki J (2007) The function of interleukin 17 in the pathogenesis of rheumatoid arthritis. Arch Immunol Ther Exp (Warsz) 55:329–334

    Article  CAS  Google Scholar 

  10. Amadi-Obi A, Yu CR, Liu X, Mahdi RM, Clarke GL, Nussenblatt RB, Gery I, Lee YS, Egwuagu CE (2007) TH17 cells contribute to uveitis and scleritis and are expanded by IL-12 and inhibited by IL-17/STAT1. Nat Med 13:711–718

    Article  CAS  PubMed  Google Scholar 

  11. Bai Y, Liu R, Huang D, La Cava A, Tang YY, Iwakura Y, Campanolo DI, Vollmer TL, Ransohoff RM, Shi FD (2008) CCL2 recruitment of IL-16-producing CD11b+ monocytes to the draining lymph nodes during the initiation of Th17-dependent B cell-mediated autoimmunity. Eur J Immunol 38:1877–1888

    Article  CAS  PubMed  Google Scholar 

  12. Zhao L, Tang Y, You Z, Wang Q, Liang S, Han X, Qiu D, Wei J, Liu Y, Shen L, Chen X, Peng Y, Li Z, Ma X (2011) Interleukin-17 contributes to the pathogenesis of autoimmune hepatitis through inducing hepatic interleukin-6 expression. PLoS One 6(4):e18909

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Li D, Cai W, Gu R, Zhang Y, Zhang H, Tang K, Xu P, Katirai F, Shi W, Wang L, Huang T, Huang B (2013) Th17 cell plays a role in the pathogenesis of Hashimoto's thyroiditis in patients. Clin Immunol 149(3):411–420

    Article  CAS  PubMed  Google Scholar 

  14. Figueroa-Vega N, Alfonso-Pérez M, Benedicto I, Sánchez-Madrid F, González-Amaro R, Marazuela M (2010) Increased circulating pro-inflammatory cytokines and Th17 lymphocytes in Hashimoto’s thyroiditis. J Clin Endocrinol Metab 95(2):953–962

    Article  CAS  PubMed  Google Scholar 

  15. Li Z, Zi-Jun C, Chun L (2013) Changes of Th3 and Th17 lymphocytes and related cytokines in patients with autoimmune thyroid disease. Chin J Immunol 29(1):43–47

    CAS  Google Scholar 

  16. Zi-jun C, Chun L, Qiang L et al (2011) The change of Th17 lymphocytes and cytokines in autoimmune thyroid diseases. Immunol J 27(9):785–788

    Google Scholar 

  17. Horie I, Abiru N, Nagayama Y, Kuriya G, Saitoh O, Ichikawa T, Iwakura Y, Eguchi K (2009) Helper type 17 immune response plays an indispensable role for development of iodine-induced autoimmune thyroiditis in nonobese diabetic-H2h4 mice. Endocrinology 150(11):5135–5142

    Article  CAS  PubMed  Google Scholar 

  18. Bettelli E, Korn T, Oukka M, Kuchroo VK (2008) Induction and effector functions of T(H)17 cells. Nature 453:1051–1057

    Article  CAS  PubMed  Google Scholar 

  19. Zhou L, Ivanov II, Spolski R, Min R, Shenderov K, Egawa T, Levy DE, Leonard WJ, Littman DR (2007) IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 8(9):967–974

    Article  CAS  PubMed  Google Scholar 

  20. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441(7090):235–238

    Article  CAS  PubMed  Google Scholar 

  21. Yang XO, Pappu BP, Nurieva R, Akimzhanov A, Kang HS, Chung Y, Ma L, Shah B, Panopoulos AD, Schluns KS, Watowich SS, Tian Q, Jetten AM, Dong C (2008) TH17 Lineage differentiation is programmed by orphan nuclear receptors RORα and RORγ. Immunity 28(1):29–39

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Laurence A, Tato CM, Davidson TS, Kanno Y, Chen Z, Yao Z, Blank RB, Meylan F, Siegel R, Hennighausen L et al (2007) Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 26:371–381

    Article  CAS  PubMed  Google Scholar 

  23. Mathur AN, ChangH C, Zisoulis DG et al (2006) T-bet is a critical determinant in the instability of the IL-17-secreting T-helper phenotype[J]. Blood 108(5):1595–1601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Horie I, Abiru N, Sakamoto H et al (2011) Induction of autoimmune thyroiditis by depletion of CD4+CD25+ regulatory T cells in thyroiditis-resistant IL-17, but not interferon-γ receptor, knockout nonobese diabetic-H2h4 mice. Endocrinology 152(11):4448–4454

    Article  CAS  PubMed  Google Scholar 

  25. Bagchi N, Brown TR, Sundick RS (1995) Thyroid cell injury is an initial event in the induction of autoimmune thyroiditis by iodine in obese strain chickens. Endocrinology 136:5054–5060

    CAS  PubMed  Google Scholar 

  26. Allen EM, Appel MC, Braveman LE (1986) The effect of iodine ingestion on the development of spontaneous lymphocytic thyroiditis in the diabetes-prone BB/W rat. Endocrinology 118:1977–1981

    Article  CAS  PubMed  Google Scholar 

  27. Braley-Mullen H, Sharp GC, Medling B et al (1999) Spontaneous autoimmune thyroiditis in NODH-2h4 mice. J Autoimmun 12:157–165

    Article  CAS  PubMed  Google Scholar 

  28. Yu S, Medling B, Yagita H, Braley-Mullen H (2001) Characteristics of inflammatory cells in spontaneous autoimmune thyroiditis of NOD.H-2h4 mice. J Autoimmun 16(1):37–46

    Article  CAS  PubMed  Google Scholar 

  29. Bonita RE, Rose NR, Rasooly L, Caturegli P, Burek CL (2003) Kinetics of mononuclear cell infiltration and cytokine expression in iodine-induced thyroiditis in the NOD-H2h4 mouse. Exp Mol Pathol 74(1):1–12

    Article  CAS  PubMed  Google Scholar 

  30. Ruggeri RM, Saitta S, Cristani M, Giovinazzo S, Tigano V, Trimarchi F, Benvenga S, Gangemi S (2014) Serum interleukin-23 (IL-23) is increased in Hashimoto’s thyroiditis. Endocr J

  31. Hai-bo X, Lei M, Yuan-bin L, Li Z, Rong-jiao Z, Xin-rong A (2012) Correlation between Treg/Th17 cells imbalance and autoimmunity in Hashimoto thyroiditis. China J Mod Med 22(23):67–71

    Google Scholar 

  32. Xue H, Wang W, Shan Z, Li Y, Li Y, Teng X, Gao Y, Fan C, Teng W (2011) Dynamic changes of CD4+CD25+ regulatory T cells in NOD.H-2h4 mice with iodine-induced autoimmune thyroiditis. Biol Trace Elem Res 143(1):292–301

    Article  CAS  PubMed  Google Scholar 

  33. Nagayama Y, Horie I, Saitoh O, Nakahara M, Abiru N (2007) CD4+CD25+ naturally occurring regulatory T cells and not lymphopenia play a role in the pathogenesis of iodine-induced autoimmune thyroiditis in NOD-H2h4 mice. J Autoimmun 29:195–202

    Article  CAS  PubMed  Google Scholar 

  34. Ichiyama K, Yoshida H, Wakabayashi Y, Chinen T, Saeki K, Nakaya M, Takaesu G, Hori S, Yoshimura A, Kobayashi T (2008) Foxp3 inhibits ROR gamma t-mediated IL-17A mRNA transcription through direct interaction with ROR gamma t. J Biol Chem 283(25):17003–17008

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research was supported by grants from the Project of Shenyang Science and Technology Bureau (no. F10-205-1-31), Talents Supported Plan of Liaoning Education Department (no. LR201026), and Doctoral Program Foundation of the Ministry of Education (no. 20092133110004). We would like to thank the Molecular Biology Laboratory of China Medical University for their collaboration and assistance. We also thank the Affiliated Hospital of Liaoning University of Traditional Chinese Medicine for providing flow cytometry.

Conflict of Interest

There is no conflict of interest relevant to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianshu Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Gao, T., Shi, R. et al. Effect of Iodine Excess on Th1, Th2, Th17, and Treg Cell Subpopulations in the Thyroid of NOD.H-2h4 Mice. Biol Trace Elem Res 159, 288–296 (2014). https://doi.org/10.1007/s12011-014-9958-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-9958-y

Keywords

Navigation