Skip to main content
Log in

Marginal Zinc Deficiency Negatively Affects Recovery from Muscle Injury in Mice

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The aim of the present study was to elucidate whether the recovery from muscle injury is impaired in marginal zinc deficiency. C57BL/6 male mice were fed a marginally zinc-deficient diet (MZD: 8 mg Zn/kg diet), a zinc-adequate diet (ZA: zinc 35 mg Zn/kg diet), and a zinc-high diet (ZH: 190 mg Zn/kg diet) for 4 weeks. Muscle injury was induced in the gastrocnemius muscles using cardiotoxin. The gastrocnemius muscles of these mice were harvested at 3, 5, 7, 10, 14, and 20 days after injury. We evaluated the regeneration of the skeletal muscle with hematoxylin and eosin staining and developmental myosin heavy-chain (dMHC: implicated in regeneration) immunostaining. The rate of dMHC-positive cells was significantly low in MZD mice compared with ZA mice at 3 days after cardiotoxin injection. The peak dMHC expression was found at 3 days after injection in ZA mice, 5 days in ZH mice, and 7 days in MZD mice. These results suggest that recovery from muscle injury might be partly impaired and delayed in MZD mice. Therefore, we strongly suggest the appropriate zinc intake to prevent the impairment of skeletal muscle regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

RDA:

Recommended dietary allowance

dMHC:

Developmental myosin heavy chain

HE:

Hematoxylin and eosin

TBS:

Tris-buffered saline

IGF-1:

Insulin-like growth factor

References

  1. Alonso JM, Edouard P, Fischetto G, Adams B, Depiesse F, Mountjoy M (2012) Determination of future prevention strategies in elite track and field: analysis of Daegu 2011 IAAF Championships injuries and illnesses surveillance. Br J Sports Med 46(7):505–514. doi:10.1136/bjsports-2012-091008

    Article  PubMed Central  PubMed  Google Scholar 

  2. Tipton KD (2010) Nutrition for acute exercise-induced injuries. Ann Nutr Metab 57(Suppl 2):43–53. doi:10.1159/000322703

    Article  CAS  PubMed  Google Scholar 

  3. Jackson MJ (1989) Zinc in human biology. In: Mills CF (ed) Physiology of zinc, general aspects. Springer-Verlag, London, pp 1–14

    Google Scholar 

  4. Kumar P, Lal NR, Mondal AK, Mondal A, Gharami RC, Maiti A (2012) Zinc and skin: a brief summary. Dermatol Online J 18(3):1

    PubMed  Google Scholar 

  5. Kawade R (2012) Zinc status and its association with the health of adolescents: a review of studies in India. Glob Health Action 5:7353. doi:10.3402/gha.v5i0.7353

    PubMed  Google Scholar 

  6. Lazzerini M, Ronfani L (2012) Oral zinc for treating diarrhoea in children. Cochrane Database Syst Rev 6, CD005436. doi:10.1002/14651858

    PubMed  Google Scholar 

  7. Hess SY, Lönnerdal B, Hotz C, Rivera JA, Brown KH (2009) Recent advances in knowledge of zinc nutrition and human health. Food Nutr Bull 30(1 Suppl):S5–S11

    PubMed  Google Scholar 

  8. Wong CP, Ho E (2012) Zinc and its role in age-related inflammation and immune dysfunction. Mol Nutr Food Res 56(1):77–87. doi:10.1002/mnfr.201100511

    Article  CAS  PubMed  Google Scholar 

  9. Sandstead HH (1995) Is zinc deficiency a public health problem? Nutrition 11(1 Suppl):87–92

    CAS  PubMed  Google Scholar 

  10. Lukaski HC (2000) Magnesium, zinc, and chromium nutriture and physical activity. Am J Clin Nutr 72(2 Suppl):585S–593S

    CAS  PubMed  Google Scholar 

  11. Briefel RR, Bialostosky K, Kennedy-Stephenson J, McDowell MA, Ervin RB, Wright JD (2000) Zinc intake of the U.S. population: findings from the third National Health and Nutrition Examination Survey, 1988–1994. J Nutr 130(5S Suppl):1367S–1373S

    CAS  PubMed  Google Scholar 

  12. Lukaski HC (2004) Vitamin and mineral status: effects on physical performance. Nutrition 20(7–8):632–644. doi:10.1016/j.nut.2004.04.001

    Article  CAS  PubMed  Google Scholar 

  13. Volpe SL (2007) Micronutrient requirements for athletes. Clin Sports Med 26(1):119–130. doi:10.1016/j.csm.2006.11.009

    Article  PubMed  Google Scholar 

  14. Deuster PA, Day BA, Singh A, Douglass L, Moser-Veillon PB (1989) Zinc status of highly trained women runners and untrained women. Am J Clin Nutr 49(6):1295–1301

    CAS  PubMed  Google Scholar 

  15. van Rij AM, Hall MT, Dohm GL, Bray J (1986) Changes in zinc metabolism following exercise in human subjects. Biol Trace Elem Res 10:99–106. doi:10.1007/BF02795562

    Article  PubMed  Google Scholar 

  16. Anderson RA, Polansky MM, Bryden NA (1984) Acute effects on chromium, copper, zinc, and selected clinical variables in urine and serum of male runners. Biol Trace Elem Res 6:327–336. doi:10.1007/BF02989240

    Article  CAS  PubMed  Google Scholar 

  17. Lichton IJ, Miyamura JB, McNutt SW (1988) Nutritional evaluation of soldiers subsisting on meal, ready-to-eat operational rations for an extended period: body measurements, hydration, and blood nutrients. Am J Clin Nutr 48(1):30–37

    CAS  PubMed  Google Scholar 

  18. Chargé SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84(1):209–238. doi:10.1152/physrev.00019.2003

    Article  PubMed  Google Scholar 

  19. Ono Y, Gnocchi VF, Zammit PS, Nagatomi R (2009) Presenilin-1 acts via Id1 to regulate the function of muscle satellite cells in a gamma-secretase-independent manner. J Cell Sci 122(Pt 24):4427–4438. doi:10.1242/jcs.049742

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Burks TN, Andres-Mateos E, Marx R, Mejias R, Van Erp C, Simmers JL, Walston JD, Ward CW, Cohn RD (2011) Losartan restores skeletal muscle remodeling and protects against disuse atrophy in sarcopenia. Sci Transl Med 3(82):82ra37. doi:10.1126/scitranslmed

    Article  PubMed Central  PubMed  Google Scholar 

  21. Shi X, Garry DJ (2006) Muscle stem cells in development, regeneration, and disease. Genes Dev 20(13):1692–1708. doi:10.1101/gad.1419406

    Article  CAS  PubMed  Google Scholar 

  22. Cooper RN, Tajbakhsh S, Mouly V, Cossu G, Buckingham M, Butler-Browne GS (1999) In vivo satellite cell activation via Myf5 and MyoD in regenerating mouse skeletal muscle. J Cell Sci 112(Pt 17):2895–2901

    CAS  PubMed  Google Scholar 

  23. Yan Z, Choi S, Liu X, Zhang M, Schageman JJ, Lee SY, Hart R, Lin L, Thurmond FA, Williams RS (2003) Highly coordinated gene regulation in mouse skeletal muscle regeneration. J Biol Chem 278(10):8826–8836. doi:10.1074/jbc.M209879200

    Article  CAS  PubMed  Google Scholar 

  24. Kirk SP, Oldham JM, Jeanplong F, Bass JJ (2004) Insulin-like growth factor-II delays early but enhances late regeneration of skeletal muscle. J Histochem Cytochem 51(12):1611–1620. doi:10.1177/002215540305101205

    Article  Google Scholar 

  25. Talmadge RJ (2000) Myosin heavy chain isoform expression following reduced neuromuscular activity: potential regulatory mechanisms. Muscle Nerve 23(5):661–679. doi:10.1002/(SICI)1097-4598(200005)23:5<661::AID-MUS3>3.0.CO;2-J

    Article  CAS  PubMed  Google Scholar 

  26. Hotz C, Brown KH (eds) (2004) International zinc nutrition consultative group (IZiNCG) technical document #1. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr Bull 25(1 Suppl 2):S99–S203

  27. Micheletti A, Rossi R, Rufini S (2001) Zinc status in athletes: relation to diet and exercise. Sports Med 31(8):577–582. doi:10.2165/00007256-200131080-00002

    Article  CAS  PubMed  Google Scholar 

  28. Wood RJ (2000) Assessment of marginal zinc status in humans. J Nutr 130(5S Suppl):1350S–1354S

    CAS  PubMed  Google Scholar 

  29. Park JH, Grandjean CJ, Antonson DL, Vanderhoof JA (1986) Effects of isolated zinc deficiency on the composition of skeletal muscle, liver and bone during growth in rats. J Nutr 116(4):610–617

    CAS  PubMed  Google Scholar 

  30. Dørup I, Clausen T (1991) Effects of magnesium and zinc deficiencies on growth and protein synthesis in skeletal muscle and the heart. Br J Nutr 66(3):493–504. doi:10.1079/BJN19910050

    Article  PubMed  Google Scholar 

  31. Nagata M, Kayanoma M, Takahashi T, Kaneko T, Hara H (2011) Marginal zinc deficiency in pregnant rats impairs bone matrix formation and bone mineralization in their neonates. Biol Trace Elem Res 142(2):190–199. doi:10.1007/s12011-010-8760-8

    Article  CAS  PubMed  Google Scholar 

  32. Golub MS, Gershwin ME, Vijayan VK (1983) Passive avoidance performance of mice fed marginally or severely zinc deficient diets during post-embryonic brain development. Physiol Behav 30(3):409–413. doi:10.1016/0031-9384(83)90145-2

    Article  CAS  PubMed  Google Scholar 

  33. National Research Council USA (1995) Nutrient requirement of laboratory animals, 4 revisedth edn. National Academy, Washington, DC

    Google Scholar 

  34. McConnell SD, Henkin RI (1974) Altered preference for sodium chloride, anorexia, and changes in plasma and uninary zinc in rats fed a zinc-deficient diet. J Nutr 104(9):1108–1114

    CAS  PubMed  Google Scholar 

  35. Shay NF, Mangian HF (2000) Neurobiology of zinc-influenced eating behavior. J Nutr 130(5S Suppl):1493S–1499S

    CAS  PubMed  Google Scholar 

  36. Grider A, Mouat MF, Scrimgeour AG (2007) Consumption of a moderately Zn-deficient and Zn-supplemented diet affects soluble protein expression in rat soleus muscle. J Nutr Biochem 18(11):753–759. doi:10.1016/j.jnutbio.2006.11.013

    Article  CAS  PubMed  Google Scholar 

  37. Rodondi A, Ammann P, Ghilardi-Beuret S, Rizzoli R (2009) Zinc increases the effects of essential amino acids-whey protein supplements in frail elderly. J Nutr Health Aging 13(6):491–497. doi:10.1007/s12603-009-0099-5

    Article  CAS  PubMed  Google Scholar 

  38. Machida S, Booth FW (2004) Insulin-like growth factor 1 and muscle growth: implication for satellite cell proliferation. Proc Nutr Soc 63(2):337–340. doi:10.1079/PNS2004354

    Article  CAS  PubMed  Google Scholar 

  39. Hall AG, Kelleher SL, Lönnerdal B, Philipps AF (2005) A graded model of dietary zinc deficiency: effects on growth, insulin-like growth factor-I, and the glucose/insulin axis in weanling rats. J Pediatr Gastroenterol Nutr 41(1):72–80. doi:10.1097/01.mpg.0000166800.54085.9c

    Article  CAS  PubMed  Google Scholar 

  40. Schertzer JD, Lynch GS (2006) Comparative evaluation of IGF-I gene transfer and IGF-I protein administration for enhancing skeletal muscle regeneration after injury. Gene Ther 13(23):1657–1664. doi:10.1038/sj.gt.3302817

    Article  CAS  PubMed  Google Scholar 

  41. Kadi F (2008) Cellular and molecular mechanisms responsible for the action of testosterone on human skeletal muscle. A basis for illegal performance enhancement. Br J Pharmacol 154(3):522–528. doi:10.1038/bjp.2008.118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Prasad AS, Mantzoros CS, Beck FW, Hess JW, Brewer GJ (1996) Zinc status and serum testosterone levels of healthy adults. Nutrition 12(5):344–348. doi:10.1016/S0899-9007(96)80058-X

    Article  CAS  PubMed  Google Scholar 

  43. Kilic M (2007) Effect of fatiguing bicycle exercise on thyroid hormone and testosterone levels in sedentary males supplemented with oral zinc. Neuro Endocrinol Lett 28(5):681–685

    CAS  PubMed  Google Scholar 

  44. Kilic M, Baltaci AK, Gunay M, Gökbel H, Okudan N, Cicioglu I (2006) The effect of exhaustion exercise on thyroid hormones and testosterone levels of elite athletes receiving oral zinc. Neuro Endocrinol Lett 27(1–2):247–252

    CAS  PubMed  Google Scholar 

  45. Aoi W, Naito Y, Yoshikawa T (2006) Exercise and functional foods. Nutr J 5:15. doi:10.1186/1475-2891-5-15

    Article  PubMed Central  PubMed  Google Scholar 

  46. Jówko E, Sacharuk J, Balasińska B, Ostaszewski P, Charmas M, Charmas R (2011) Green tea extract supplementation gives protection against exercise-induced oxidative damage in healthy men. Nutr Res 31(11):813–821. doi:10.1016/j.nutres

    Article  PubMed  Google Scholar 

  47. Djordjevic B, Baralic I, Kotur-Stevuljevic J, Stefanovic A, Ivanisevic J, Radivojevic N, Andjelkovic M, Dikic N (2012) Effect of astaxanthin supplementation on muscle damage and oxidative stress markers in elite young soccer players. J Sports Med Phys Fitness 52(4):382–392

    CAS  PubMed  Google Scholar 

  48. Gravina L, Ruiz F, Diaz E, Lekue JA, Badiola A, Irazusta J, Gil SM (2012) Influence of nutrient intake on antioxidant capacity, muscle damage and white blood cell count in female soccer players. J Int Soc Sports Nutr 9(1):32. doi:10.1186/1550-2783-9-32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Van Loan MD, Sutherland B, Lowe NM, Turnlund JR, King JC (1999) The effects of zinc depletion on peak force and total work of knee and shoulder extensor and flexor muscles. Int J Sport Nutr 9(2):125–135

    PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. R. Nagatomi (Tohoku University) and Dr. K. Matsuo (Ritsumeikan University) for helpful discussions and protocol concerning histological analysis. We would like to thank Dr. K. Nakayama, Dr. T. Tsukahara, and Dr N. Matsukawa (Kyoto Institute of Nutrition and Pathology) for their assistance with the histological analyses and their critical comments.

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuko Jinno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jinno, N., Nagata, M. & Takahashi, T. Marginal Zinc Deficiency Negatively Affects Recovery from Muscle Injury in Mice. Biol Trace Elem Res 158, 65–72 (2014). https://doi.org/10.1007/s12011-014-9901-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-9901-2

Keywords

Navigation