Skip to main content
Log in

Effect of Supranutritional Organic Selenium Supplementation on Postpartum Blood Micronutrients, Antioxidants, Metabolites, and Inflammation Biomarkers in Selenium-Replete Dairy Cows

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Dairy cows have increased nutritional requirements for antioxidants postpartum. Supranutritional organic Se supplementation may be beneficial because selenoproteins are involved in regulating oxidative stress and inflammation. Our objective was to determine whether feeding Se-yeast above requirements to Se-replete dairy cows during late gestation affects blood micronutrients, antioxidants, metabolites, and inflammation biomarkers postpartum. During the last 8-weeks before calving, dairy cows at a commercial farm were fed either 0 (control) or 105 mg Se-yeast once weekly (supranutritional Se-yeast), in addition to Na selenite at 0.3 mg Se/kg dry matter in their rations. Concentrations of whole-blood (WB) Se and serum Se, erythrocyte glutathione (GSH), and serum albumin, cholesterol, α-tocopherol, haptoglobin, serum amyloid A (SAA), calcium, magnesium, phosphorus, non-esterified fatty acids, and β-hydroxybutyrate were measured directly after calving, at 48 h, and 14 days of lactation in 10 cows of each group. Supranutritional Se-yeast supplementation affected indicators of antioxidant status and inflammation. Cows fed a supranutritional Se-yeast supplement during the last 8-weeks of gestation had higher Se concentrations in WB (overall 52 % higher) and serum (overall 36 % higher) at all-time points, had higher SAA concentrations at 48 h (98 % higher), had higher erythrocyte GSH (38 % higher) and serum albumin concentrations (6.6 % higher) at 14 days, and had lower serum cholesterol concentrations and higher α-tocopherol/cholesterol ratios at calving and at 48 h compared with control cows. In conclusion, feeding Se-replete cows during late gestation a supranutritional Se-yeast supplement improves antioxidant status and immune responses after calving without negatively impacting other micronutrients and energy status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AIC:

Akaike information criterion

BHBA:

β-hydroxybutyrate

DM:

Dry matter

FDA:

Food and Drug Administration

GSH:

Glutathione

ICP-MS:

Inductively coupled argon plasma emission spectroscopy

NEFA:

Non-esterified fatty acids

NRC:

National Research Council

SAA:

Serum amyloid A

Se:

Selenium

SeCys:

Selenocysteine

SeMet:

Selenomethionine

TBARS:

Thiobarbituric acid reactive substances

TMR:

Total mixed ration

WB:

Whole blood

References

  1. Ammerman CB, Miller SM (1975) Selenium in ruminant nutrition: a review. J Dairy Sci 58(10):1561–1577. doi:10.3168/jds.S0022-0302(75)84752-7

    Article  CAS  PubMed  Google Scholar 

  2. Hefnawy AE, Tortora-Perez JL (2010) The importance of selenium and the effects of its deficiency in animal health. Small Rumin Res 89(2–3):185–192. doi:10.1016/j.smallrumres.2009.12.042

    Article  Google Scholar 

  3. Willshire JA, Payne JH (2011) Selenium and vitamin E in dairy cows - a review. Cattle Pract 19:22–30

  4. Ahsan U, Kamran Z, Raza I, Ahmad S, Babar W, Riaz MH, Iqbal Z (2014) Role of selenium in male reproduction-a review. Anim Reprod Sci 146(1–2):55–62. doi:10.1016/j.anireprosci.2014.01.009

    Article  CAS  PubMed  Google Scholar 

  5. FDA (2012) Code of Federal Regulations Title 21 - Food and Drugs Chapter 1 -Food and Drug Administration, Department of Health and Human Services Subchapter E - Animal drugs, feeds, and related products Part 573 - Food additive permitted in feed and drinking water of animals Subpart B - Food Additive Listing Section 573920 - Selenium

  6. Stewart WC, Bobe G, Pirelli GJ, Mosher WD, Hall JA (2012) Organic and inorganic selenium: III. Ewe and progeny performance. J Anim Sci 90(12):4536–4543. doi:10.2527/jas.2011-5019

    Article  CAS  PubMed  Google Scholar 

  7. NRC (2001) Nutrient Requirements of Dairy Cattle, 7th edn. National Academy Press, Washington, DC

    Google Scholar 

  8. Hugejiletu H, Bobe G, Vorachek WR, Gorman ME, Mosher WD, Pirelli GJ, Hall JA (2013) Selenium supplementation alters gene expression profiles associated with innate immunity in whole-blood neutrophils of sheep. Biol Trace Elem Res 154(1):28–44. doi:10.1007/s12011-013-9716-6

    Article  CAS  PubMed  Google Scholar 

  9. Hall JA, Vorachek WR, Stewart WC, Gorman ME, Mosher WD, Pirelli GJ, Bobe G (2013) Selenium supplementation restores innate and humoral immune responses in footrot-affected sheep. PLoS One 8(12):e82572. doi:10.1371/journal.pone.0082572

    Article  PubMed Central  PubMed  Google Scholar 

  10. Stewart WC, Bobe G, Vorachek WR, Pirelli GJ, Mosher WD, Nichols T, Van Saun RJ, Forsberg NE, Hall JA (2012) Organic and inorganic selenium: II. Transfer efficiency from ewes to lambs. J Anim Sci 90(2):577–584. doi:10.2527/jas.2011-4076

    Article  CAS  PubMed  Google Scholar 

  11. Xun W, Shi L, Yue W, Zhang C, Ren Y, Liu Q (2012) Effect of high-dose nano-selenium and selenium-yeast on feed digestibility, rumen fermentation, and purine derivatives in sheep. Biol Trace Elem Res 150(1–3):130–136. doi:10.1007/s12011-012-9452-3

    Article  PubMed  Google Scholar 

  12. Kumar N, Garg AK, Mudgal V, Dass RS, Chaturvedi VK, Varshney VP (2008) Effect of different levels of selenium supplementation on growth rate, nutrient utilization, blood metabolic profile, and immune response in lambs. Biol Trace Elem Res 126(Suppl 1):S44–S56. doi:10.1007/s12011-008-8214-8

    Article  CAS  PubMed  Google Scholar 

  13. Kumar N, Garg AK, Dass RS, Chaturvedi VK, Mudgal V, Varshney VP (2009) Selenium supplementation influences growth performance, antioxidant status and immune response in lambs. Anim Feed Sci Tech 153(1–2):77–87. doi:10.1016/j.anifeedsci.2009.06.007

    Article  CAS  Google Scholar 

  14. Hall JA, Harwell AM, Van Saun RJ, Vorachek WR, Stewart WC, Galbraith ML, Hooper KJ, Hunter JK, Mosher WD, Pirelli GJ (2011) Agronomic biofortification with selenium: Effects on whole blood selenium and humoral immunity in beef cattle. Anim Feed Sci Tech 164(3–4):184–190. doi:10.1016/j.anifeedsci.2011.01.009

    Article  CAS  Google Scholar 

  15. Hall JA, Bobe G, Vorachek WR, Hugejiletu GME, Mosher WD, Pirelli GJ (2013) Effects of Feeding Selenium-Enriched Alfalfa Hay on Immunity and Health of Weaned Beef Calves. Biol Trace Elem Res. doi:10.1007/s12011-013-9843-0

    Google Scholar 

  16. Hall JA, Bobe G, Hunter JK, Vorachek WR, Stewart WC, Vanegas JA, Estill CT, Mosher WD, Pirelli GJ (2013) Effect of feeding selenium-fertilized alfalfa hay on performance of weaned beef calves. PLoS One 8(3):e58188. doi:10.1371/journal.pone.0058188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Liao SF, Brown KR, Stromberg AJ, Burris WR, Boling JA, Matthews JC (2011) Dietary supplementation of selenium in inorganic and organic forms differentially and commonly alters blood and liver selenium concentrations and liver gene expression profiles of growing beef heifers. Biol Trace Elem Res 140(2):151–169. doi:10.1007/s12011-010-8685-2

    Article  CAS  PubMed  Google Scholar 

  18. Hall JA, Bobe G, Vorachek WR, Estill CT, Mosher WD, Pirelli GJ, Gamroth M (2014) Effect of supranutritional maternal and colostral selenium supplementation on passive absorption of immunoglobulin G in selenium-replete dairy calves. J Dairy Sci. doi:10.3168/jds.2013-7481

    Google Scholar 

  19. Koenig KM, Beauchemin KA (2009) Supplementing selenium yeast to diets with adequate concentrations of selenium: Selenium status, thyroid hormone concentrations and passive transfer of immunoglobulins in dairy cows and calves. Can J Anim Sci 89(1):111–122

    Article  CAS  Google Scholar 

  20. Ceballos-Marquez A, Barkema HW, Stryhn H, Wichtel JJ, Neumann J, Mella A, Kruze J, Espindola MS, Wittwer F (2010) The effect of selenium supplementation before calving on early-lactation udder health in pastured dairy heifers. J Dairy Sci 93(10):4602–4612. doi:10.3168/jds.2010-3086

    Article  CAS  PubMed  Google Scholar 

  21. Calamari L, Petrera F, Bertin G (2010) Effects of either sodium selenite or Se yeast (Sc CNCM I-3060) supplementation on selenium status and milk characteristics in dairy cows. Livest Sci 128(1–3):154–165. doi:10.1016/j.livsci.2009.12.005

    Article  Google Scholar 

  22. Calamari L, Petrera F, Abeni F, Bertin G (2011) Metabolic and hematological profiles in heat stressed lactating dairy cows fed diets supplemented with different selenium sources and doses. Livest Sci 142(1–3):128–137. doi:10.1016/j.livsci.2011.07.005

    Article  Google Scholar 

  23. Bernabucci U, Ronchi B, Lacetera N, Nardone A (2005) Influence of body condition score on relationships between metabolic status and oxidative stress in periparturient dairy cows. J Dairy Sci 88(6):2017–2026. doi:10.3168/jds.S0022-0302(05)72878-2

    Article  CAS  PubMed  Google Scholar 

  24. Sordillo LM, O’Boyle N, Gandy JC, Corl CM, Hamilton E (2007) Shifts in thioredoxin reductase activity and oxidant status in mononuclear cells obtained from transition dairy cattle. J Dairy Sci 90(3):1186–1192. doi:10.3168/jds.S0022-0302(07)71605-3

    Article  CAS  PubMed  Google Scholar 

  25. Sordillo LM, Raphael W (2013) Significance of metabolic stress, lipid mobilization, and inflammation on transition cow disorders. Vet Clin North Am Food Anim Pract 29(2):267–278. doi:10.1016/j.cvfa.2013.03.002

    Article  PubMed  Google Scholar 

  26. Mattmiller SA, Carlson BA, Gandy JC, Sordillo LM (2014) Reduced macrophage selenoprotein expression alters oxidized lipid metabolite biosynthesis from arachidonic and linoleic acid. J Nutr Biochem 25(6):647–654. doi:10.1016/j.jnutbio.2014.02.005

    Article  CAS  PubMed  Google Scholar 

  27. Hall JA, Van Saun RJ, Bobe G, Stewart WC, Vorachek WR, Mosher WD, Nichols T, Forsberg NE, Pirelli GJ (2012) Organic and inorganic selenium: I. Oral bioavailability in ewes. J Anim Sci 90(2):568–576. doi:10.2527/jas.2011-4075

    Article  CAS  PubMed  Google Scholar 

  28. Qu Y, Lytle K, Traber MG, Bobe G (2013) Depleted serum vitamin E concentrations precede left displaced abomasum in early-lactation dairy cows. J Dairy Sci 96(5):3012–3022. doi:10.3168/jds.2012-6357

    Article  CAS  PubMed  Google Scholar 

  29. Hall JA, Bobe G, Nixon BK, Vorachek WR, Hugejiletu NT, Mosher WD, Pirelli GJ (2014) Effect of transport on blood selenium and glutathione status in feeder lambs. J Anim Sci. doi:10.2527/jas.2014-7753

    Google Scholar 

  30. Owen JB, Butterfield AB (2010) Measurement of oxidized/reduced glutathione ratio. Methods Mol Biol 648:269–277

    Article  CAS  PubMed  Google Scholar 

  31. Ingraham RH, Stanley RW, Wagner WC (1979) Seasonal effects of tropical climate on shaded and nonshaded cows as measured by rectal temperature, adrenal cortex hormones, thyroid hormone, and milk production. Am J Vet Res 40(12):1792–1797

    CAS  PubMed  Google Scholar 

  32. Armstrong DV (1994) Heat stress interaction with shade and cooling. J Dairy Sci 77(7):2044–2050. doi:10.3168/jds.S0022-0302(94)77149-6

    Article  CAS  PubMed  Google Scholar 

  33. Goff JP (2008) The monitoring, prevention, and treatment of milk fever and subclinical hypocalcemia in dairy cows. Vet J 176(1):50–57. doi:10.1016/j.tvjl.2007.12.020

    Article  CAS  PubMed  Google Scholar 

  34. Goff JP (2000) Pathophysiology of calcium and phosphorus disorders. Vet Clin North Am Food Anim Pract 16(2):319–337

  35. McArt JA, Nydam DV, Oetzel GR (2012) Epidemiology of subclinical ketosis in early lactation dairy cattle. J Dairy Sci 95(9):5056–5066. doi:10.3168/jds.2012-5443

    Article  CAS  PubMed  Google Scholar 

  36. Sordillo LM, Aitken SL (2009) Impact of oxidative stress on the health and immune function of dairy cattle. Vet Immunol Immunopathol 128(1–3):104–109. doi:10.1016/j.vetimm.2008.10.305

    Article  CAS  PubMed  Google Scholar 

  37. Labunskyy VM, Hatfield DL, Gladyshev VN (2014) Selenoproteins: Molecular pathways and physiological roles. Physiol Rev 94(3):739–777. doi:10.1152/physrev.00039.2013

    Article  CAS  PubMed  Google Scholar 

  38. Whanger PD (2002) Selenocompounds in plants and animals and their biological significance. J Am Coll Nutr 21(3):223–232

    Article  CAS  PubMed  Google Scholar 

  39. Weiss WP, Todhunter DA, Hogan JS, Smith KL (1990) Effect of duration of supplementation of selenium and vitamin E on periparturient dairy cows. J Dairy Sci 73(11):3187–3194. doi:10.3168/jds.S0022-0302(90)79009-1

    Article  CAS  PubMed  Google Scholar 

  40. Meglia GE, Johannisson A, Petersson L, Waller KP (2001) Changes in some blood micronutrients, leukocytes and neutrophil expression of adhesion molecules in periparturient dairy cows. Acta Vet Scand 42(1):139–150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Weiss WP, Hogan JS (2005) Effect of selenium source on selenium status, neutrophil function, and response to intramammary endotoxin challenge of dairy cows. J Dairy Sci 88(12):4366–4374. doi:10.3168/jds.S0022-0302(05)73123-4

    Article  CAS  PubMed  Google Scholar 

  42. Phipps RH, Grandison AS, Jones AK, Juniper DT, Ramos-Morales E, Bertin G (2008) Selenium supplementation of lactating dairy cows: effects on milk production and total selenium content and speciation in blood, milk and cheese. Animal 2(11):1610–1618. doi:10.1017/S175173110800298X

  43. Schrauzer GN (2000) Selenomethionine: a review of its nutritional significance, metabolism and toxicity. J Nutr 130(7):1653–1656

  44. Rayman MP (2008) Food-chain selenium and human health: emphasis on intake. Br J Nutr 100(2):254–268. doi:10.1017/S0007114508939830

  45. Weiss WP, Shoemaker DE, McBeth LR, St-Pierre NR (2013) Effects on lactating dairy cows of oscillating dietary concentrations of unsaturated and total long-chain fatty acids. J Dairy Sci 96(1):506–514. doi:10.3168/jds.2012-5835

    Article  CAS  PubMed  Google Scholar 

  46. Hidiroglou M, Batra TR, Roy GL (1994) Changes in plasma alpha-tocopherol and selenium of gestating cows fed hay or silage. J Dairy Sci 77(1):190–195. doi:10.3168/jds.S0022-0302(94)76941-1

    Article  CAS  PubMed  Google Scholar 

  47. Meglia GE, Holtenius K, Petersson L, Ohagen P, Waller KP (2004) Prediction of vitamin A, vitamin E, selenium and zinc status of periparturient dairy cows using blood sampling during the mid dry period. Acta Vet Scand 45(1–2):119–128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Pilarczyk B, Jankowiak D, Tomza-Marciniak A, Pilarczyk R, Sablik P, Drozd R, Tylkowska A, Skolmowska M (2012) Selenium concentration and glutathione peroxidase (GSH-Px) activity in serum of cows at different stages of lactation. Biol Trace Elem Res 147(1–3):91–96. doi:10.1007/s12011-011-9271-y

    Article  CAS  PubMed  Google Scholar 

  49. Burk RF, Hill KE, Read R, Bellew T (1991) Response of rat selenoprotein P to selenium administration and fate of its selenium. Am J Physiol 261(1 Pt 1):E26–E30

    CAS  PubMed  Google Scholar 

  50. Deagen JT, Butler JA, Zachara BA, Whanger PD (1993) Determination of the distribution of selenium between glutathione peroxidase, selenoprotein P, and albumin in plasma. Anal Biochem 208(1):176–181. doi:10.1006/abio.1993.1025

    Article  CAS  PubMed  Google Scholar 

  51. Niki E, Noguchi N, Tsuchihashi H, Gotoh N (1995) Interaction among vitamin C, vitamin E, and beta-carotene. Am J Clin Nutr 62(6 Suppl):1322S–1326S

    CAS  PubMed  Google Scholar 

  52. Hurst R, Armah CN, Dainty JR, Hart DJ, Teucher B, Goldson AJ, Broadley MR, Motley AK, Fairweather-Tait SJ (2010) Establishing optimal selenium status: results of a randomized, double-blind, placebo-controlled trial. Am J Clin Nutr 91(4):923–931. doi:10.3945/ajcn.2009.28169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Juniper DT, Phipps RH, Jones AK, Bertin G (2006) Selenium supplementation of lactating dairy cows: effect on selenium concentration in blood, milk, urine, and feces. J Dairy Sci 89(9):3544–3551. doi:10.3168/jds.S0022-0302(06)72394-3

  54. Lushchak VI (2012) Glutathione homeostasis and functions: potential targets for medical interventions. J Amino Acids 2012:736837. doi:10.1155/2012/736837

    Article  PubMed Central  PubMed  Google Scholar 

  55. Brigelius-Flohe R, Maiorino M (2013) Glutathione peroxidases. Biochim Biophys Acta 1830(5):3289–3303. doi:10.1016/j.bbagen.2012.11.020

    Article  CAS  PubMed  Google Scholar 

  56. Stefanon B, Sgorlon S, Gabai G (2005) Usefulness of nutraceutics in controlling oxidative stress in dairy cows around parturition. Vet Res Commun 29(Suppl 2):387–390. doi:10.1007/s11259-005-0088-z

    Article  PubMed  Google Scholar 

  57. Sharma N, Singh NK, Singh OP, Pandey V, Verma PK (2011) Oxidative stress and antioxidant status during transition period in dairy cows. Asian Aust J Anim 24(4):479–484

  58. Niki E, Traber MG (2012) A history of vitamin E. Ann Nutr Metab 61(3):207–212. doi:10.1159/000343106

    Article  CAS  PubMed  Google Scholar 

  59. Meglia GE, Jensen SK, Lauridsen C, Persson Waller K (2006) Alpha-tocopherol concentration and stereoisomer composition in plasma and milk from dairy cows fed natural or synthetic vitamin E around calving. J Dairy Res 73(2):227–234. doi:10.1017/S0022029906001701

    Article  CAS  PubMed  Google Scholar 

  60. Weiss WP, Hogan JS, Wyatt DJ (2009) Relative bioavailability of all-rac and RRR vitamin E based on neutrophil function and total alpha-tocopherol and isomer concentrations in periparturient dairy cows and their calves. J Dairy Sci 92(2):720–731. doi:10.3168/jds.2008-1635

    Article  CAS  PubMed  Google Scholar 

  61. Qu Y, Fadden AN, Traber MG, Bobe G (2014) Potential risk indicators of retained placenta and other diseases in multiparous cows. J Dairy Sci 97(7):4151–4165. doi:10.3168/jds.2013-7154

    Article  CAS  PubMed  Google Scholar 

  62. Herdt TH, Smith JC (1996) Blood-lipid and lactation-stage factors affecting serum vitamin E concentrations and vitamin E cholesterol ratios in dairy cattle. J Vet Diagn Invest 8(2):228–232

    Article  CAS  PubMed  Google Scholar 

  63. Traber MG, Jialal I (2000) Measurement of lipid-soluble vitamins–further adjustment needed? Lancet 355(9220):2013–2014. doi:10.1016/S0140-6736(00)02345-X

    Article  CAS  PubMed  Google Scholar 

  64. Hall JA, Tooley KA, Gradin JL, Jewell DE, Wander RC (2002) Influence of dietary long-chain n-3 fatty acids from menhaden fish oil on plasma concentrations of alpha-tocopherol in geriatric beagles. Am J Vet Res 63(1):104–110

    Article  CAS  PubMed  Google Scholar 

  65. Traber MG (2013) Mechanisms for the prevention of vitamin E excess. J Lipid Res 54(9):2295–2306. doi:10.1194/jlr.R032946

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Liu K, Luo HL, Zuo ZY, Jia HN, Zhang YW, Chang YF, Jiao LJ (2014) Regulation of sheep alpha-TTP by dietary vitamin E and preparation of monoclonal antibody for sheep alpha-TTP. Gene 540(1):110–116. doi:10.1016/j.gene.2014.02.048

    Article  CAS  PubMed  Google Scholar 

  67. Bobe G, Young JW, Beitz DC (2004) Invited review: pathology, etiology, prevention, and treatment of fatty liver in dairy cows. J Dairy Sci 87(10):3105–3124. doi:10.3168/jds.S0022-0302(04)73446-3

    Article  CAS  PubMed  Google Scholar 

  68. Abeni F, Calamari L, Stefanini L (2007) Metabolic conditions of lactating Friesian cows during the hot season in the Po valley. 1. Blood indicators of heat stress. Int J Biometeorol 52(2):87–96. doi:10.1007/s00484-007-0098-3

    Article  PubMed  Google Scholar 

  69. Vogel KD, Claus JR, Grandin T, Oetzel GR, Schaefer DM (2011) Effect of water and feed withdrawal and health status on blood and serum components, body weight loss, and meat and carcass characteristics of Holstein slaughter cows. J Anim Sci 89(2):538–548. doi:10.2527/jas.2009-2675

    Article  CAS  PubMed  Google Scholar 

  70. Chen ZJ, Herdt TH, Liesman JS, Ames NK, Emery RS (1995) Reduction of bovine plasma-cholesterol concentration by partial interruption of enterohepatic circulation of bile-salts - a novel hypocholesterolemic model. J Lipid Res 36(7):1544–1556

  71. Liepa GU, Beitz DC, Linder JR (1978) Cholesterol synthesis in ruminating and nonruminating goats. J Nutr 108(3):535–543

    CAS  PubMed  Google Scholar 

  72. Kowalik B, Skomial J, Pajak JJ, Taciak M, Majewska M, Belzecki G (2012) Population of ciliates, rumen fermentation indicators and biochemical parameters of blood serum in heifers fed diets supplemented with yeast (Saccharomyces cerevisiae) preparation. Anim Sci Pap Rep 30(4):329–338

    CAS  Google Scholar 

  73. Cray C, Zaias J, Altman NH (2009) Acute phase response in animals: a review. Comp Med 59(6):517–526

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Higuchi H, Katoh N, Miyamoto T, Uchida E, Yuasa A, Takahashi K (1994) Dexamethasone-induced haptoglobin release by calf liver parenchymal cells. Am J Vet Res 55(8):1080–1085

    CAS  PubMed  Google Scholar 

  75. Yoshioka M, Watanabe A, Shimada N, Murata H, Yokomizo Y, Nakajima Y (2002) Regulation of haptoglobin secretion by recombinant bovine cytokines in primary cultured bovine hepatocytes. Domest Anim Endocrinol 23(3):425–433

    Article  CAS  PubMed  Google Scholar 

  76. Humblet MF, Guyot H, Boudry B, Mbayahi F, Hanzen C, Rollin F, Godeau JM (2006) Relationship between haptoglobin, serum amyloid A, and clinical status in a survey of dairy herds during a 6-month period. Vet Clin Pathol 35(2):188–193

    Article  PubMed  Google Scholar 

  77. Zaworski EM, Shriver-Munsch CM, Fadden NA, Sanchez WK, Yoon I, Bobe G (2014) Effects of feeding various dosages of Saccharomyces cerevisiae fermentation product in transition dairy cows. J Dairy Sci 97(5):3081–3098. doi:10.3168/jds.2013-7692

    Article  CAS  PubMed  Google Scholar 

  78. Trevisi E, Amadori M, Cogrossi S, Razzuoli E, Bertoni G (2012) Metabolic stress and inflammatory response in high-yielding, periparturient dairy cows. Res Vet Sci 93(2):695–704. doi:10.1016/j.rvsc.2011.11.008

    Article  CAS  PubMed  Google Scholar 

  79. Bionaz M, Trevisi E, Calamari L, Librandi F, Ferrari A, Bertoni G (2007) Plasma paraoxonase, health, inflammatory conditions, and liver function in transition dairy cows. J Dairy Sci 90(4):1740–1750. doi:10.3168/jds.2006-445

    Article  CAS  PubMed  Google Scholar 

  80. Bertoni G, Trevisi E, Han X, Bionaz M (2008) Effects of inflammatory conditions on liver activity in puerperium period and consequences for performance in dairy cows. J Dairy Sci 91(9):3300–3310. doi:10.3168/jds.2008-0995

    Article  CAS  PubMed  Google Scholar 

  81. Goff JP, Horst RL (1997) Physiological changes at parturition and their relationship to metabolic disorders. J Dairy Sci 80(7):1260–1268. doi:10.3168/jds.S0022-0302(97)76055-7

    Article  CAS  PubMed  Google Scholar 

  82. Kimura K, Reinhardt TA, Goff JP (2006) Parturition and hypocalcemia blunts calcium signals in immune cells of dairy cattle. J Dairy Sci 89(7):2588–2595. doi:10.3168/jds.S0022-0302(06)72335-9

    Article  CAS  PubMed  Google Scholar 

  83. Mulligan F, O’Grady L, Rice D, Doherty M (2006) Production diseases of the transition cow: Milk fever and subclinical hypocalcaemia. Ir Vet J 59(12):697–702

    Google Scholar 

  84. Horst RL, Goff JP, Reinhardt TA (2005) Adapting to the transition between gestation and lactation: differences between rat, human and dairy cow. J Mammary Gland Biol Neoplasia 10(2):141–156. doi:10.1007/s10911-005-5397-x

    Article  PubMed  Google Scholar 

  85. Drackley JK (1999) ADSA Foundation Scholar Award. Biology of dairy cows during the transition period: the final frontier? J Dairy Sci 82(11):2259–2273

    Article  CAS  PubMed  Google Scholar 

  86. Bobe G, Velez JC, Beitz DC, Donkin SS (2009) Glucagon increases hepatic mRNA concentrations of ureagenic and gluconeogenic enzymes in early-lactation dairy cows. J Dairy Sci 92(10):5092–5099. doi:10.3168/jds.2009-2152

    Article  CAS  PubMed  Google Scholar 

  87. LeBlanc S (2010) Monitoring metabolic health of dairy cattle in the transition period. J Reprod Dev 56(Suppl):S29–S35

    Article  PubMed  Google Scholar 

  88. Ingvartsen KL, Moyes K (2013) Nutrition, immune function and health of dairy cattle. Animal 7(Suppl 1):112–122. doi:10.1017/S175173111200170X

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funded by Animal Health and Disease Project Formula Funds, Oregon State University, Corvallis, OR 97331–2219, USA (J.A. Hall, Principal Investigator). Appreciation is also expressed to Dr. Jeff Wendler and Columbia River Dairy, LLC, Boardman, OR for the use of their dairy herd, calves, and facilities for the conduct of these experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean A. Hall.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hall, J.A., Bobe, G., Vorachek, W.R. et al. Effect of Supranutritional Organic Selenium Supplementation on Postpartum Blood Micronutrients, Antioxidants, Metabolites, and Inflammation Biomarkers in Selenium-Replete Dairy Cows. Biol Trace Elem Res 161, 272–287 (2014). https://doi.org/10.1007/s12011-014-0107-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0107-4

Keywords

Navigation