Skip to main content
Log in

Analysis of Platinum and Trace Metals in Treated Glioma Rat Cells by X-Ray Fluorescence Emission

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

So far, reports in the literature indicate a superior effectiveness of anticancer treatments using drug liposome-encapsulated. In this work, the influence of cisplatin associated with lipid vesicles (liposomes) is studied. Possible induced changes in the elemental composition, distribution, and concentration inside F98 glioma cells are investigated by synchrotron X-ray fluorescence (SXRF) and particle-induced X-ray emission (PIXE), combined with backscattering spectrometry (BS). SXRF at nanometer spatial resolution provides information on the two-dimension variation of elements inside the cells, while PIXE and BS allow the determination of the elemental concentration at μg g−1 level. In comparison with dead cells, the elemental analysis shows that both platinum and zinc contents decrease in surviving samples. Moreover, higher levels of calcium and lower levels of potassium are revealed in dead cells, especially in those treated with liposomal cisplatin. These findings would mean that liposome-treated cells died mainly by apoptosis. Although further analyses are still necessary, the results presented in this work suggest that the lipid vesicles could provide, thus, a methodology for an effective platinum administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kelland L (2007) The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 7:573–584

    Article  CAS  PubMed  Google Scholar 

  2. Jamieson ER, Lippard SJ (1999) Structure, recognition, and processing of cisplatin-DNA adducts. Chem Rev 99:2467–2498

    Article  CAS  PubMed  Google Scholar 

  3. Kartalou M, Essigmann JM (2001) Recognition of cisplatin adducts by cellular proteins. Mutat Res 478:1–21

    Article  CAS  PubMed  Google Scholar 

  4. Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nature 4:307–320

    CAS  Google Scholar 

  5. Hartman T, Lipp HP (2003) Toxicity of platinum compounds. Expert Opin Pharmacother 4:889–901

    Article  Google Scholar 

  6. Stölting DP, Borrmann M, Koch M, Wiese M, Royer HD, Bendas G (2014) How liposomal cisplatin overcomes chemoresistance in ovarian tumor cells. Anticancer Res 1:525–30

    Google Scholar 

  7. Iwamoto T (2013) Clinical application of drug delivery systems in cancer chemotherapy: review of the efficacy and side effects of approved drugs challenges of drug delivery systems. Biol Pharm Bull 36:715–718

    Article  CAS  PubMed  Google Scholar 

  8. Hamilton A, Biganzoli L, Coleman R, Mauria L, Henneber P, Awada A, Nooji M, Beex L, Piccart M, Van Hoorebeeck I, Bruning P, De Valeriola D (2002) EORTC 10968: a phase I clinical and pharmacokinetic study of polyethylene glycol liposomal doxorubicin (Caelyx®, Doxil®) at a 6-week interval in patients with metastatic breast cancer. Annal Oncol 13:910–918

    Article  CAS  Google Scholar 

  9. Chang DK, Li PC, Lu RM, Jane WN, Wu HC (2013) Peptide-mediated liposomal Doxorubicine enhances drug delivery efficiency and therapeutic efficacy in animal models. PLOS 8:1–12

  10. Qin Z, Joseph A, Caruso LB, Matusche A, Beckerf JS (2011) Trace metal imaging with high spatial resolution: applications in biomedicine. Metallomics 3:28–37

    Article  CAS  PubMed  Google Scholar 

  11. Hummer AA, Rompel A (2013) The use of X-ray absorption and synchrotron based micro-X-ray fluorescence spectroscopy to investigate anti-cancer metal compounds in vivo and in vitro. Metallomics 5:597–614

    Article  CAS  PubMed  Google Scholar 

  12. Fahrni CJ (2007) Biological applications of X-ray fluorescence microscopy: exploring the subcellular topography and speciation of transition metals. Curr Opin Chem Biol 11:121–127

    Article  CAS  PubMed  Google Scholar 

  13. Ortega R, Devès G, Carmona A (2009) Bio-metals imaging and speciation in cells using proton and synchrotron radiation X-ray microspectroscopy. J R Soc Interface 6:S649–S658

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Hall MD, Dillon CT, Zhang M, Beale P, Cai Z, Lai B, Stampfl AP, Hambley TW (2003) The cellular distribution and oxidation state of platinum(ll) and platinum(lV) antitumour complexes in cancer cells. J Biol Inorg Chem 8:776–737

    Article  Google Scholar 

  15. Hall MD, Alderden RA, Zhang M, Beale PJ, Cai Z, Lai B, Stampfl AP, Hambley TW (2006) The fate of platinum(II) and platinum(IV) anti-cancer agents in cancer cells and tumours. J Struct Biol 1:38–44

    Article  Google Scholar 

  16. Chen KG, Valencia JC, Lai B, Zhang G, Paterson JK, Rouzaud F, Berens W, Wincovitch SM, Garfield SH, Leapman RD, Hearing VJ, Gottesman MM (2006) Melanosomal sequestration of cytotoxic drugs contributes to the intractability of malignant melanomas. PNAS 103:9903–9907

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Shimura M, Saito A, Matsuyama S, Sakuma T, Terui Y, Ueno K, Yumoto H, Yamauchi K, Yamamura K, Mimura H, Sano Y, Yabashi M, Tamasaku K, Nishio K, Nishino Y, Endo K, Hatake K, Mori Y, Ishizaka Y, Ishikawa T (2005) Element array by scanning X-ray fluorescence microscopy after cis-diamminedichloro-platinum(II) treatment. Cancer Res 65:4998–5002

    Article  CAS  PubMed  Google Scholar 

  18. Roudeau S, Carmona A, Perrin L, Ortega R (2014) Correlative organelle fluorescence microscopy and synchrotron X-ray chemical element imaging in single cells. Anal Bioanal Res doi:10.1007/s00216-014-8004-4

  19. Zhang JZ, Bryce NS, Lanzirotti A, Chen CKJ, Paterson D, de Jonge MD, Howard DL, Hambley TW (2012) Getting to the core of platinum drug bio-distributions: the penetration of anti-cancer platinum complexes into spheroid tumour models. Metallomics 4:1209–1217

    Article  CAS  PubMed  Google Scholar 

  20. Matsuyama S, Shimura M, Fujii M, Maeshima K, Yumoto H, Mimura H, Sano Y, Yabashi M, Nishino Y, Tamasaku K, Ishizaka Y, Ishikawa T, Yamauchi K (2010) Elemental mapping of frozen-hydrated cells with cryo-scanning X-ray fluorescence microscopy. X-Ray Spectrom 39:260–266

    Article  CAS  Google Scholar 

  21. Barth RF (1998) Rat brain tumor models in experimental neuro-oncology: the 9 L, C6, T9, F98, RG2 (D74), RT-2 and CNS-1 gliomas. J Neurooncol 36:91–102

    Article  CAS  PubMed  Google Scholar 

  22. Carmona A, Devès G, Ortega R (2008) Quantitative micro-analysis of metal ions in subcellular compartments of cultured dopaminergic cells by combination of three ion beam techniques. Anal Bioanal Chem 390:1585–1594

    Article  CAS  PubMed  Google Scholar 

  23. Campbell JL, Boyd NI, Gras N, Bonnick P, Maxwell JA (2010) Nucl Instrum Meth B 268:3356–3363

    Article  CAS  Google Scholar 

  24. Mayer M. SIMNRA User’s Guide. Report IPP 9/113, (1997) Max-Planck-Institut für Plasmaphysik, Garching, Germany

  25. Martinez-Criado G, Tucoulou R, Cloetens P, Bleuet P, Bohic S, Cauzid J, Kieffer I, Kosior E, Labouré S, Petitgirard S, Rack A, Sans JA, Segura-Ruiz J, Suhonen H, Susini J, Vilanova J (2012) Status of the hard X-ray microprobe beamline ID22 of the European Synchrotron Radiation Facility. J Synchrotron Radiat 19:10–18

    Article  PubMed  Google Scholar 

  26. Solé VA, Papillon E, Cotte M, Walter P, Susini J (2007) A multiplatform code for the analysis of energy-dispersive energy X-ray fluorescence spectra. Spectrochim Acta Part B 62:63–68

    Article  Google Scholar 

  27. Verheij M, Bartelink H (2000) Radiation-induced apoptosis. Cell Tissue Res 301:133–142

    Article  CAS  PubMed  Google Scholar 

  28. Serrano FA, Matsuo AL, Monteforte PT, Bechara A, Smaili SS, Santana DP, Rodrigues T, Pereira FV, Silva LS, Machado J Jr, Santos EL, Pesquero JB, Martins RM, Travassos LR, Caires ACF, Rodrigues EG (2011) A cyclopalladated complex interacts with mitochondrial membrane thiol-groups and induces the apoptotic intrinsec pathway in murine and cisplatin-resistant human tumor cells. BMC Cancer 11:296–311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Zong WX, Thompson CB (2006) Necrotic death as a cell fate. Genes Dev 20:1–15

    Article  CAS  PubMed  Google Scholar 

  30. Sharma S, Rais A, Sandhu R, Nel W, Ebadi M (2013) Clinical significance of metallothioneins in cell therapy and nanomedicine. Int J Nanomedicine 8:1477–1488

    Article  PubMed Central  PubMed  Google Scholar 

  31. Ortega R, Moretto P, Fajac A, Bénard J, Llabador Y, Simonoff M (1996) Quantitative mapping of platinum and essential trace metal in cisplatin resistant and sensitive human ovarian adenocarcinoma cells. Cell Mol Biol 42:77–88

    CAS  PubMed  Google Scholar 

  32. Thirumoorthy N, Manisenthil Kumar KT, Shyam Sundar A, Panayappan L, Chatterjee M (2007) Metallothionein: an overview. World J Gastroenterol 13:993–996

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Ortega R, Cloetens P, Deves G, Carmona A, Bohic S (2007) Iron storage within dopamine neurovesicles revealed by chemical nano-imaging. PloS ONE 2:e925

Download references

Acknowledgments

The authors would like to thank at the ESRF, SPIRIT, and AIFIRA for their financial and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Gil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gil, S., Carmona, A., Martínez-Criado, G. et al. Analysis of Platinum and Trace Metals in Treated Glioma Rat Cells by X-Ray Fluorescence Emission. Biol Trace Elem Res 163, 177–183 (2015). https://doi.org/10.1007/s12011-014-0097-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0097-2

Keywords

Navigation