Skip to main content
Log in

Selenium Suppresses Lipopolysaccharide-Induced Fibrosis in Peritoneal Mesothelial Cells Through Inhibition of Epithelial-to-Mesenchymal Transition

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Peritoneal fibrosis resulting from long-term clinical peritoneal dialysis has been the main reason of dropout from peritoneal dialysis. Peritonitis as a common complication of peritoneal dialysis treatment may lead to the occurrences of peritoneal fibrosis. We cultured peritoneal mesothelial cells with lipopolysaccharides (LPS) in order to stimulate the environment of peritonitis and investigate whether lipopolysaccharides could induce epithelial-to-mesenchymal transition (EMT). Oxidative stress could stimulate fibrogenesis while selenium has antioxidant properties. So, this study also explored whether selenium supplementation affects lipopolysaccharide-induced EMT and fibrosis. We found that lipopolysaccharides could activate EMT changes such as the loss of E-cadherin and the increase of α-smooth muscle actin (α-SMA), collagen I, vimentin, and fibronectin (FN), while selenium inhibits EMT by modulating reactive oxygen species (ROS) generation and ROS/MMP-9 signaling pathways in peritoneal mesothelial cells. Moreover, it was revealed that selenium decreased the EMT events of peritoneal mesothelial cells via inhibition of PI3k/AKT pathways. In conclusion, these findings enable a better understanding of the mechanism of peritoneal fibrosis and explore a new idea for the prevention and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zuo L, Wang M, Chinese Association of Blood Purification Management of Chinese Hospital Association (2010) Current burden and probable increasing incidence of ESRD in China. Clin Nephrol 74(Suppl 1):S20–S22

    PubMed  Google Scholar 

  2. Modi GK, Jha V (2006) The incidence of end-stage renal disease in India: a population-based study. Kidney Int 70(12):2131–2133

    PubMed  CAS  Google Scholar 

  3. Yang X, Yi C, Liu X et al (2013) Clinical outcome and risk factors for mortality in Chinese patients with diabetes on peritoneal dialysis: a 5-year clinical cohort study. Diabetes Res Clin Pract 100(3):354–361

    Article  PubMed  Google Scholar 

  4. Mehrotra R, Chiu YW, Kalantar-Zadeh K et al (2011) Similar outcomes with hemodialysis and peritoneal dialysis in patients with end-stage renal disease. Arch Intern Med 171(2):110–118

    Article  PubMed  Google Scholar 

  5. Yeates K, Zhu N, Vonesh E et al (2012) Hemodialysis and peritoneal dialysis are associated with similar outcomes for end-stage renal disease treatment in Canada. Nephrol Dial Transplant 27(9):3568–3575

    Article  PubMed  Google Scholar 

  6. Ueno T, Nakashima A, Doi S et al (2013) Mesenchymal stem cells ameliorate experimental peritoneal fibrosis by suppressing inflammation and inhibiting TGF-β1 signaling. Kidney Int 84(2):297–307

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Kitamoto M, Kato K, Sugimoto A et al (2011) Sairei-to ameliorates rat peritoneal fibrosis partly through suppression of oxidative stress. Nephron Exp Nephrol 117(3):e71–e81

    Article  PubMed  CAS  Google Scholar 

  8. de Lima SM, Otoni A, Sabino Ade P et al (2013) Inflammation, neoangiogenesis and fibrosis in peritoneal dialysis. Clin Chim Acta 421:46–50

    Article  PubMed  Google Scholar 

  9. Margetts PJ, Kolb M, Yu L et al (2001) A chronic inflammatory infusion model of peritoneal dialysis in rats. Perit Dial Int 21:S368–S372

    PubMed  Google Scholar 

  10. Borges FR, Silva MD, Córdova MM et al (2014) Anti-inflammatory action of hydroalcoholic extract, dichloromethane fraction and steroid α-spinasterol from Polygala sabulosa in LPS-induced peritonitis in mice. J Ethnopharmacol 151(1):144–150

    Article  PubMed  CAS  Google Scholar 

  11. Liu ZW, Zhu HT, Chen KL et al (2013) Selenium attenuates high glucose-induced ROS/TLR-4 involved apoptosis of rat cardiomyocyte. Biol Trace Elem Res 156(1–3):262–270

    Article  PubMed  CAS  Google Scholar 

  12. Yang SY, Zhang L, Miao KK et al (2013) Effects of selenium intervention on chronic fluorosis-induced renal cell apoptosis in rats. Biol Trace Elem Res 153(1–3):237–242

    Article  PubMed  CAS  Google Scholar 

  13. Cases J, Vacchina V, Napolitano A et al (2001) Selenium from selenium-rich Spirulina is less bioavailable than selenium from sodium selenite and selenomethionine in selenium-deficient rats. J Nutr 131(9):2343–2350

    PubMed  CAS  Google Scholar 

  14. Babaknejad N, Sayehmiri F, Sayehmiri K et al (2014) The relationship between selenium levels and breast cancer: a systematic review and meta-analysis. Biol Trace Elem Res 159(1–3):1–7

    Article  PubMed  CAS  Google Scholar 

  15. Tarp U, Overvad K, Hansen JC et al (1985) Low selenium level in severe rheumatoid arthritis. Scand J Rheumatol 14(2):97–101

    Article  PubMed  CAS  Google Scholar 

  16. Loscalzo J (2014) Keshan disease, selenium deficiency, and the selenoproteome. N Engl J Med 370(18):1756–1760

    Article  PubMed  CAS  Google Scholar 

  17. Nazıroğlu M, Yıldız K, Tamtürk B et al (2012) Selenium and psoriasis. Biol Trace Elem Res 150(1–3):3–9

    PubMed  Google Scholar 

  18. Senol N, Nazıroğlu M, Yürüker V (2014) N-Acetylcysteine and selenium modulate oxidative stress, antioxidant vitamin and cytokine values in traumatic brain injury-induced rats. Neurochem Res 39(4):685–692

    Article  PubMed  CAS  Google Scholar 

  19. Nazıroğlu M, Karaoğlu A, Orhan Aksoy A (2004) Selenium and high dose vitamin E administration protects cisplatin-induced oxidative damage to renal, liver and lens tissues in rats. Toxicology 195:221–230

    Article  PubMed  Google Scholar 

  20. Ding M, Potter JJ, Liu X et al (2010) Selenium supplementation decreases hepatic fibrosis in mice after chronic carbon tetrachloride administration. Biol Trace Elem Res 133(1):83–97

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Zhu X, Guo K, Lu Y (2011) Selenium effectively inhibits 1,2-dihydroxynaphthalene-induced apoptosis in human lens epithelial cells through activation of PI3-K/Akt pathway. Mol Vis 17:2019–2027

    PubMed  CAS  PubMed Central  Google Scholar 

  22. Yu H, Huang J, Wang S et al (2013) Overexpression of Smad7 suppressed ROS/MMP9-dependent collagen synthesis through regulation of heme oxygenase-1. Mol Biol Rep 40(9):5307–5314

    Article  PubMed  CAS  Google Scholar 

  23. Tobar N, Villar V, Santibanez JF (2010) ROS-NFkappaB mediates TGF-beta1-induced expression of urokinase-type plasminogen activator, matrix metalloproteinase-9 and cell invasion. Mol Cell Biochem 340(1–2):195–202

    Article  PubMed  CAS  Google Scholar 

  24. Boca M, D’Amato L, Distefano G et al (2007) Polycystin-1 induces cell migration by regulating phosphatidylinositol 3-kinase-dependent cytoskeletal rearrangements and GSK3beta-dependent cell cell mechanical adhesion. Mol Biol Cell 18:4050–4061

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Tiwari N, Gheldof A, Tatari M et al (2012) EMT as the ultimate survival mechanism of cancer cells. Semin Cancer Biol 22(3):194–207

    Article  PubMed  CAS  Google Scholar 

  26. Aroeira LS, Aguilera A, Sánchez-Tomero JA et al (2007) Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions. J Am Soc Nephrol 18(7):2004–2013

    Article  PubMed  CAS  Google Scholar 

  27. Zhou Q, Yang M, Lan H et al (2013) miR-30a negatively regulates TGF-β1-induced epithelial-mesenchymal transition and peritoneal fibrosis by targeting Snai1. Am J Pathol 183(3):808–819

    Article  PubMed  CAS  Google Scholar 

  28. Yokoi H, Kasahara M, Mori K et al (2012) Pleiotrophin triggers inflammation and increased peritoneal permeability leading to peritoneal fibrosis. Kidney Int 81(2):160–169

    Article  PubMed  CAS  Google Scholar 

  29. Gangji AS, Brimble KS, Margetts PJ (2009) Association between markers of inflammation, fibrosis and hypervolemia in peritoneal dialysis patients. Blood Purif 28(4):354–358

    Article  PubMed  CAS  Google Scholar 

  30. Zhao L, Yang R, Cheng L et al (2011) LPS-induced epithelial-mesenchymal transition of intrahepatic biliary epithelial cells. J Surg Res 171(2):819–825

    Article  PubMed  CAS  Google Scholar 

  31. Lee HB, Ha H (2007) Mechanisms of epithelial-mesenchymal transition of peritoneal mesothelial cells during peritoneal dialysis. J Korean Med Sci 22(6):943–945

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Yu MA, Shin KS, Kim JH et al (2009) HGF and BMP-7 ameliorate high glucose-induced epithelial-to-mesenchymal transition of peritoneal mesothelium. J Am Soc Nephrol 20(3):567–581

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Copeland JW, Beaumont BW, Merrilees MJ et al (2007) Epithelial-to-mesenchymal transition of human proximal tubular epithelial cells: effects of rapamycin, mycophenolate, cyclosporin, azathioprine, and methylprednisolone. Transplantation 83(6):809–814

    Article  PubMed  CAS  Google Scholar 

  34. Fusshoeller A (2008) Histomorphological and functional changes of the peritoneal membrane during long-term peritoneal dialysis. Pediatr Nephrol 23(1):19–25

    Article  PubMed  Google Scholar 

  35. Duan SB, Liu GL, Wang YH et al (2012) Epithelial-to-mesenchymal transdifferentiation of renal tubular epithelial cell mediated by oxidative stress and intervention effect of probucol in diabetic nephropathy rats. Ren Fail 34(10):1244–1251

    Article  PubMed  CAS  Google Scholar 

  36. Baker RD, Baker SS, LaRosa K et al (1993) Selenium regulation of glutathione peroxidase in human hepatoma cell line Hep3B. Arch Biochem Biophys 304(1):53–57

    Article  PubMed  CAS  Google Scholar 

  37. Lothrop AP, Snider GW, Ruggles EL et al (2014) Why is mammalian thioredoxin reductase 1 so dependent upon the use of selenium? Biochemistry 53(3):554–565

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Saito Y, Yoshida Y, Akazawa T et al (2003) Cell death caused by selenium deficiency and protective effect of antioxidants. J Biol Chem 278(41):39428–39434

    Article  PubMed  CAS  Google Scholar 

  39. Uğuz AC, Nazıroğlu M (2012) Effects of selenium on calcium signaling and apoptosis in rat dorsal root ganglion neurons induced by oxidative stress. Neurochem Res 37(8):1631–1638

    Article  PubMed  Google Scholar 

  40. Uğuz AC, Naziroğlu M, Espino J et al (2009) Selenium modulates oxidative stress-induced cell apoptosis in human myeloid HL-60 cells through regulation of calcium release and caspase-3 and -9 activities. J Membr Biol 232(1–3):15–23

    PubMed  Google Scholar 

  41. Vunta H, Davis F, Palempalli UD et al (2007) The anti-inflammatory effects of selenium are mediated through 15-deoxy-Delta12,14-prostaglandin J2 in macrophages. J Biol Chem 282(25):17964–17973

    Article  PubMed  CAS  Google Scholar 

  42. Zhang W, Zhang R, Wang T et al (2014) Selenium inhibits LPS-induced pro-inflammatory gene expression by modulating MAPK and NF-κB signaling pathways in mouse mammary epithelial cells in primary culture. Inflammation 37(2):478–485

    Article  PubMed  CAS  Google Scholar 

  43. Zeng R, Yao Y, Han M et al (2008) Biliverdin reductase mediates hypoxia-induced EMT via PI3-kinase and Akt. J Am Soc Nephrol 19:380–387

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Conflict of Interest

Jinyan Liu, Lingling Zeng, Yuliang Zhao, Bin Zhu, Wanjun Ren, and Chunling Wu have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunling Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Zeng, L., Zhao, Y. et al. Selenium Suppresses Lipopolysaccharide-Induced Fibrosis in Peritoneal Mesothelial Cells Through Inhibition of Epithelial-to-Mesenchymal Transition. Biol Trace Elem Res 161, 202–209 (2014). https://doi.org/10.1007/s12011-014-0091-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0091-8

Keywords

Navigation