Skip to main content

Advertisement

Log in

Comparison of Au(III) and Ga(III) Ions’ Binding to Calf Thymus DNA: Spectroscopic Characterization and Thermal Analysis

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Metals have been studied as potential chemotherapeutic agents for cancer therapies due to their high reactivity toward a wide variety of substances. The characterization of metal ion-binding capacities is essential to understand the possible effects of metals on target biomolecules. In the present study, biochemical effects of Au(III) and Ga(III) ions on calf thymus DNA (ctDNA) were studied comparatively via bioanalytical, spectroscopic, and thermal methods. Briefly, UV-Vis absorbance spectroscopy, fluorescence spectroscopy, circular dichroism (CD) spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy were utilized for spectroscopic characterization, and isothermal titration calorimetry (ITC) measurements were performed for thermal analysis. Our results reveal that both Au(III) and Ga(III) ions are capable of interacting with ctDNA, and Au(III) ions display a more favorable interaction and a higher binding affinity. ITC analyses indicate that the Au(III)-DNA interaction displays a binding affinity (Ka) around 1.43 × 106 M−1, while a Ka around 1.17 × 105 M−1 was observed for the Ga(III)-DNA binding. It was suggested that both metal ions are unlikely to change the structural B-conformation while interacting with ctDNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ctDNA:

Calf thymus DNA

CD:

Circular dichroism

FT-IR:

Fourier transform infrared

UV-Vis:

Ultraviolet-visible

EB:

Ethidium bromide

References

  1. Gómez-Ruiz S, Gallego B, Kaluderović MR, Kommera H, Hey-Hawkins E, Paschke R, Kaluderović GN (2009) Novel gallium(III) complexes containing phthaloyl derivatives of neutral aminoacids with apoptotic activity in cancer cells. J Organomet Chem 694:2191–2197

    Article  Google Scholar 

  2. Samari F, Hemmateenejad B, Shamsipur M, Rashidi M, Samouei H (2012) Affinity of two novel five-coordinated anticancer Pt(II) complexes to human and bovine serum albumins: a spectroscopic approach. Inorg Chem 51:3454–3564

    Article  CAS  PubMed  Google Scholar 

  3. Kaluderović MR, Gómez-Ruiz S, Gallego B, Hey-Hawkins E, Paschke R, Kaluderović GN (2010) Anticancer activity of dinuclear gallium(III) carboxylate complexes. Eur J Med Chem 45:519–525

    Article  PubMed  Google Scholar 

  4. Tabassum S, Asim A, Arjmand F, Afzal M, Bagchi V (2012) Synthesis and characterization of copper(II) and zinc(II)-based potential chemotherapeutic compounds: their biological evaluation viz. DNA binding profile, cleavage and antimicrobial activity. Eur J Med Chem 58:308–316

    Article  CAS  PubMed  Google Scholar 

  5. Ortega R, Suda A, Devès G (2003) Nuclear microprobe imaging of gallium nitrate in cancer cells. Nucl Instrum Methods Phys Res Sect B 210:364–367

    Article  CAS  Google Scholar 

  6. Enyedy ÉA, Dömötör O, Varga E, Kiss T, Trondl R, Hartinger CG, Keppler BK (2012) Comparative solution equilibrium studies of anticancer gallium(III) complexes of 8-hydroxyquinoline and hydroxy(thio)pyrone ligands. J Inorg Biochem 117:189–197

    Article  CAS  PubMed  Google Scholar 

  7. Lessa JA, Parrilha GL, Beraldo H (2012) Gallium complexes as new promising metallodrug candidates. Inorg Chim Acta 393:53–63

    Article  CAS  Google Scholar 

  8. Despaigne AAR, Parrilha GL, Izidoro JB, da Costa PR, dos Santos RG, Piro OE, Castellano EE, Rocha WR, Beraldo H (2012) 2-Acetylpyridine- and 2-benzoylpyridine-derived hydrazones and their gallium(III) complexes are highly cytotoxic to glioma cells. Eur J Med Chem 50:163–172

    Article  CAS  PubMed  Google Scholar 

  9. Gabbiani C, Casini A, Messori L (2007) Gold (III) compounds as anticancer drugs. Gold Bull 40:73–88

    Article  CAS  Google Scholar 

  10. Aldinucci D, Ronconi L, Fregona D (2009) Groundbreaking gold(III) anticancer agents. Drug Discov Today 14:1075–1076

    Article  CAS  Google Scholar 

  11. Casini A, Hartinger C, Gabbiani C, Mini E, Dyson PJ, Keppler BK, Messori L (2008) Gold(III) compounds as anticancer agents: relevance of gold-protein interactions for their mechanism of action. J Inorg Biochem 102:564–575

    Article  CAS  PubMed  Google Scholar 

  12. Maiore L, Cinellu MA, Nobili S, Landini I, Mini E, Gabbiani C, Messori L (2012) Gold(III) complexes with 2-substituted pyridines as experimental anticancer agents: solution behavior, reactions with model proteins, antiproliferative properties. J Inorg Biochem 108:123–127

    Article  CAS  PubMed  Google Scholar 

  13. Arjmand F, Parveen S, Afzal M, Shahid M (2012) Synthesis, characterization, biological studies (DNA binding, cleavage, antibacterial and topoisomerase I) and molecular docking of copper(II) benzimidazole complexes. J Photochem Photobiol B 114:15–26

    Article  CAS  PubMed  Google Scholar 

  14. Wu SS, Yuan WB, Wang HY, Zhang Q, Liu M, Yu KB (2008) Synthesis, crystal structure and interaction with DNA and HSA of (N, N’-dibenzylethane-1,2-diamine) transition metal complexes. J Inorg Biochem 102:2026–2034

    Article  CAS  PubMed  Google Scholar 

  15. Sheng R, Luo T, Zhu Y, Li H, Sun J, Chen S, Sun W, Cao A (2011) The intracellular plasmid DNA localization of cationic reducible cholesterol-disulfide lipids. Biomaterials 32:3507–3519

    Article  CAS  PubMed  Google Scholar 

  16. Chatterjee T, Pal A, Dey S, Chatterjee BK, Chakrabarti P (2012) Interaction of virstatin with human serum albumin: spectroscopic analysis and molecular modeling. PLoS One 7:e37468

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Markovitsi D (2009) Interaction of UV radiation with DNA helices. Pure Appl Chem 81:1635–1644

    Article  CAS  Google Scholar 

  18. Eshkourfu R, Čobeljić B, Vujčić M, Turel I, Pevec A, Sepčić K, Zec M, Radulović S, Srdić-Radić T, Mitić D, Andjelković K, Sladić D (2011) Synthesis, characterization, cytotoxic activity and DNA binding properties of the novel dinuclear cobalt(III) complex with the condensation product of 2-acetylpyridine and malonic acid dihydrazide. J Inorg Biochem 105:1196–1203

    Article  CAS  PubMed  Google Scholar 

  19. Ju CC, Zhang AG, Yuan CL, Zhao XL, Wang KZ (2011) The interesting DNA-binding properties of three novel dinuclear Ru(II) complexes with varied lengths of flexible bridges. J Inorg Biochem 105:435–443

    Article  CAS  PubMed  Google Scholar 

  20. Ivanov VI, Minchenkova LE, Schyolkina AK, Poletayer AI (1973) Different conformations of double-stranded nucleic acid in solution as revealed by circular dichroism. Biopolymers 12:89–110

    Article  CAS  PubMed  Google Scholar 

  21. Sun J, Lu Y, Wang L, Cheng D, Sun Y, Zeng X (2013) Polym Chem 4:4045–4051

    Article  CAS  Google Scholar 

  22. Jangir DK, Charak S, Mehrotra R, Kundu S (2011) FTIR and circular dichroism spectroscopic study of interaction of 5-fluorouracil with DNA. J Photochem Photobiol B 105:143–148

    Article  CAS  PubMed  Google Scholar 

  23. Uma V, Elango M, Nair BU (2007) Copper(II) terpyridine complexes: effect of substituent on DNA binding and nuclease activity. Eur J Inorg Chem 22:3484–3490

    Article  Google Scholar 

  24. McNaught AD, Wilkinson A (1997) Compendium of chemical terminology. Blackwell, Oxford

    Google Scholar 

  25. Sikora C, Turner R (2005) Investigation of ligand binding to the multidrug resistance protein EmrE by isothermal titration calorimetry. Biophys J 88:475–482

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Keller PB, Hartman KA (1986) The effect of ionic environment and mercury(II) binding on the alternative structures of DNA. An infrared spectroscopic study. Spectrochim Acta A 42:299–306

    Article  Google Scholar 

  27. Tyagi G, Charak S, Mehrotra R (2012) Binding of an indole alkaloid, vinblastine to double stranded DNA: a spectroscopic insight in to nature and strength of interaction. J Photochem Photobiol B 108:48–52

    Article  CAS  PubMed  Google Scholar 

  28. Nafisi S, Sobhanmanesh A, Esm-Hosseini M, Alimoghaddam K, Tajmir-Riahi HA (2005) Interaction of antitumor drug Sn(CH3)2Cl2 with DNA and RNA. J Mol Struct 750:22–27

    Article  CAS  Google Scholar 

  29. Ozdemir A, Tekiner-Gursacli R, Tekinay T (2014) Non-intercalative, deoxyribose binding of boric acid to calf thymus DNA. Biol Trace Elem Res 158:268–274

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Scientific and Technological Research Council of Turkey (TUBITAK), European Cooperation in Science and Technology (COST) action-112S047. The authors thank Rengin Erdem for her great contributions in UV-Vis absorbance spectroscopy and fluorescence spectroscopy sessions and Alper Devrim Ozkan for his fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Turgay Tekinay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarioglu, O.F., Tekiner-Gursacli, R., Ozdemir, A. et al. Comparison of Au(III) and Ga(III) Ions’ Binding to Calf Thymus DNA: Spectroscopic Characterization and Thermal Analysis. Biol Trace Elem Res 160, 445–452 (2014). https://doi.org/10.1007/s12011-014-0059-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0059-8

Keywords

Navigation