Skip to main content
Log in

Cytotoxicity and DNA/BSA binding ability of copper(II) complexes with dimethylbithiazole

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The interaction of two copper(II) complexes [Cu(dmbt)2NO3](NO3) and [CuCl(dmbt)(μ-Cl)]2 with calf-thymus DNA has been explored by using absorption, emission, and thermal denaturation. Both complexes illustrate high interaction ability with calf-thymus DNA, with intrinsic binding constants K b of 1.7 × 105 and 1.4 × 105 M−1 at 298 K, respectively, which is in the range of those found for typical classical intercalators. The intermolecular interaction between Cu complexes and bovine serum albumin (BSA) under imitated physiological conditions was investigated using UV–Vis and fluorescence. Tryptophan quenching experiment showed that both complexes bind BSA strongly, with dynamic quenching constants of 1.16 × 105 M−1 s−1 and 1.64 × 105 M−1 s−1, respectively, at 298 K, and a single class of binding site for the complexes on BSA. Both Cu complexes were also used for in vitro cytotoxicity evaluation against four cultures, NIH-3T3, Caco-2, HT-29, and T47D by MTT assay. Interestingly, nitrate contained complex illustrated no toxicity on normal cell line (NIH-3T3), with twice antitumor activity against colon carcinoma (HT-29), comparing with cisplatin.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang CX, Lippard SJ (2003) Curr Opin Chem Biol 7:481

    Article  CAS  Google Scholar 

  2. O’Dwyer PJ, Stevenson JP, Johnson SW (2000) Drugs 59:19

    Article  Google Scholar 

  3. Rabik CA, Dolan ME (2007) Cancer Treat Rev 33:9

    Article  CAS  Google Scholar 

  4. Urquiola C, Gambino D, Cabrera M, Lavaggi ML, Cerecetto H, González M, Cerain AL, Monge A, Costa-Filho A, Torre MH (2008) J Inorg Biochem 102:119

    Article  CAS  Google Scholar 

  5. Jia L, Xu XM, Xu J, Chen LH, Jiang P, Cheng FX, Lu GN, Wang Q, Wu JC, Tang N (2010) Chem Pharm Bull 58:1003

    Article  CAS  Google Scholar 

  6. Chen J, Huang Y, Liu G, Afrasiabi Z, Sinn E, Padhye S, Ma Y (2004) Toxicol Appl Pharmacol 197:40

    Article  CAS  Google Scholar 

  7. Li L, Du K, Wang Y, Jia H, Hou X, Chao H, Ji L (2013) Dalton Trans 42:11576

    Article  CAS  Google Scholar 

  8. Balewski Ł, Sączewski F, Bednarski PJ, Gdaniec M, Borys E, Makowska A (2014) Molecules 19:17026

    Article  Google Scholar 

  9. Sikic BI, Rozencweig M, Carter SK (1985) Bleomycin Chemotherapy. Academic Press, Orlando

    Google Scholar 

  10. Boger DL, Cai H (1999) Angew Chem Int Ed 38:448

    Article  CAS  Google Scholar 

  11. Galm U, Hager MH, Van Lanen SG, Ju J, Thorson JS, Shen B (2005) Chem Rev 105:739

    Article  CAS  Google Scholar 

  12. Boger DL, Ramsey TM, Cai H, Hoehn ST, Stubbe J (1998) J Am Chem Soc 120:9139

    Article  CAS  Google Scholar 

  13. Chen J, Stubbe J (2005) Nat Rev Cancer 5:102

    Article  CAS  Google Scholar 

  14. Al-Hashemi R, Safari N, Abedi A, Notash B, Amani V, Khavasi HR (2009) J Coord Chem 62:2909

    Article  CAS  Google Scholar 

  15. He XM, Carter DC (1992) Nature 358:209

    Article  CAS  Google Scholar 

  16. Wang YP, Wei YL, Dong C (2006) J Photochem Photobiol A Chem 177:6

    Article  CAS  Google Scholar 

  17. Tian J, Liu J, Hu Z, Chen X (2005) Bioorg Med Chem 13:4124

    Article  CAS  Google Scholar 

  18. Bloomfield VA, Crothers DM, Tinoco I (1974) Physical chemistry of nucleic acids. Harper and Row, New York

    Google Scholar 

  19. Li Q, Yang P, Wang H, Guo M (1996) J Inorg Biochem 64:181

    Article  CAS  Google Scholar 

  20. Tan LF, Chao H, Zhou YF, Ji LN (2007) Polyhedron 26:3029

    Article  CAS  Google Scholar 

  21. Tan LF, Liu XH, Chao H, Ji LN (2007) J Inorg Biochem 101:56

    Article  CAS  Google Scholar 

  22. Liu Y, Chao H, Yuan Y, Yu H, Ji L (2006) Inorg Chim Acta 359:3807

    Article  CAS  Google Scholar 

  23. Li H, Le XY, Pang DW, Deng H, Xu ZH, Lin ZH (2005) J Inorg Biochem 99:2240

    Article  CAS  Google Scholar 

  24. Mudasir, Yoshioka N, Inoue H (1999) J Inorg Biochem 77:239

  25. Tamil-Selvi P, Stoeckli-Evans H, Palaniandavar MJ (2005) Inorg Biochem 99:2110

    Article  CAS  Google Scholar 

  26. Rohs R, Sklenar H (2004) J Biomol Struct Dyn 21:699

    Article  CAS  Google Scholar 

  27. Hu Z, Tong CL (2007) Anal Chim Acta 587:187

    Article  CAS  Google Scholar 

  28. Lakowicz JR (2006) Principles of Fluorescence Spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  29. Mehri-Lighvan Z, Abedi A, Bordbar M (2012) Polyhedron 42:153

    Article  Google Scholar 

  30. Long EC, Barton JK (1990) Acc Chem Res 23:271

    Article  CAS  Google Scholar 

  31. Zeynep D, Ralph P, Jan ARS, Sukunath N, Clemens R (2004) J Am Chem Soc 126:4762

    Article  Google Scholar 

  32. Sreekanth B, Krishnamurthy G, BhojyaNaik HS, Vishnuvardhan TK, Shashikumar ND, Lokesh MR (2011) J Chem Pharm Res 3:407

    CAS  Google Scholar 

  33. Thierry DJ (2006) Photochem Photobiol B Biol 82:45

    Article  Google Scholar 

  34. Arounaguiri S, Maiya BG (1996) Inorg Chem 35:4267

    Article  CAS  Google Scholar 

  35. Neyhart GA, Grover N, Smith SR, Kalsbeck WA, Fairley TA, Cory M, Thorp HH (1993) J Am Chem Soc 115:4423

    Article  CAS  Google Scholar 

  36. Peng B, Xiang C, Du KJ, Yu BL, Chao H, Ji LN (2009) Spectrochim Acta, Part A 74:896

    Article  Google Scholar 

  37. Tabatabaee M, Bordbar M, Ghassemzadeh M, Tahriri M, Tahrir M, Lighvan ZM, Neumüller B (2013) Eur J Med Chem 70:364

    Article  CAS  Google Scholar 

  38. Zhang W, Wang F, Xiong X, Ge Y, Liu Y (2013) J Chil Chem Soc 58:1717

    Article  Google Scholar 

  39. Samari F, Hemmateenejad B, Shamsipur M, Rashidi M, Samouei H (2012) Inorg Chem 51:3454

    Article  CAS  Google Scholar 

  40. He Y, Wang Y, Tang L, Liu H, Chen W, Zheng Z, Zou G (2008) J Fluoresc 18:433

    Article  Google Scholar 

  41. Li X, Li X, Li Y, Wu Z, Yan C (2013) J Photochem Photobiol B Biol 118:22

    Article  Google Scholar 

  42. Peters T (1985) Adv Protein Chem 37:161

    Article  CAS  Google Scholar 

  43. Ray A, Koley Seth B, Pal U, Basu S (2012) Spectrochim Acta A Mol Biomol Spectrosc 92:164

  44. Jayabharathi J, Thanikachalam V, Perumal MV (2012) J Lumin 132:707

    Article  CAS  Google Scholar 

  45. Bhat SS, Kumbhar AA, Heptullah H, Khan AA, Gobre VV, Gejji SP, Puranik VG (2011) Inorg Chem 50:545

    Article  CAS  Google Scholar 

  46. Stern O, Volmer M (1919) Phys Z 20:183

    CAS  Google Scholar 

  47. Lakowicz JR, Weber G (1973) Biochemistry 12:4161

    Article  CAS  Google Scholar 

  48. Lakowica JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Plenum Press, New York

    Book  Google Scholar 

  49. Deepa S, Mishra AK (2005) J Pharm Biomed Anal 38:556

    Article  CAS  Google Scholar 

  50. Satyanarayana S, Dabroniak JC, Chaires JB (1992) Biochemistry 31:9319

    Article  CAS  Google Scholar 

  51. Mosmann T (1983) J Immunol Meth 65:55

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This paper was supported by Deputy of Research in Tehran University of Medical Sciences with Grant No.92-02-33-22122 with thanks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Nasser Ostad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abedi, A., Lighvan, Z.M. & Ostad, S.N. Cytotoxicity and DNA/BSA binding ability of copper(II) complexes with dimethylbithiazole. Monatsh Chem 147, 1651–1658 (2016). https://doi.org/10.1007/s00706-015-1652-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-015-1652-z

Keywords

Navigation