Skip to main content
Log in

Responses of Proteolytic Enzymes in Embryonic Axes of Germinating Bean Seeds under Copper Stress

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The changes in protease activities in embryonic axes during the first days of bean (Phaseolus vulgaris L.) seed germination were investigated in response to copper stress. Synthetic substrates and specific protease inhibitors have been used to define qualitatively and quantitatively different catalytic classes, particularly endoproteases (EP), carboxypeptidases (CP) and aminopeptidases (AP), then identify which ones were affected in the presence of copper. In fact, a failure in storage proteins mobilization and a disorder of nitrogen supply at enzymatic level occurred in Cu. In fact, Cu inhibited azocaseinolytic activity (ACA) and cysteine-, aspartic-, serine-, and metallo-endopeptidases activities (Cys-EP, Asp-EP, Ser-Ep, and Met-EP, respectively). Besides, Cu affected leucine- and proline-aminopeptidases (LAP and PAP, respectively) and glycine-carboxypeptidases (Gly-CP). The proteolytic responses might also be associated with the decrease in defense capacity in the Cu-treated embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DAN:

Dicyclohexylaminenitrite

E-64:

l-trans-epoxysuccinyl-leucylamide-4-guanidino-butane

FW:

Fresh weight

LAP:

Leucine aminopeptidases

Leu-ßNA:

l-leucine-ß-naphthylamide

NEM:

N-ethylmaleimide

PAP:

Proline aminopeptidases

PMSF:

Phenylmethylsulfonylfluoride

Pro-ßNA:

l-proline-ß-naphthylamide

STI:

Soybean trypsin inhibitor

References

  1. Ernst WHO (1998) Effects of heavy metals in plants at the cellular and organismic level ecotoxicology. In: Gerrit S, Bernd M III (eds) Bioaccumulation and biological effects of chemicals. Wiley and Spektrum Akademisher Verlag, Berlin, pp 587–620

    Google Scholar 

  2. Li W, Khan MA, Yamaguchi S, Kamiya Y (2005) Effects of heavy metals on seed germination and early seedling growth of Arabidopsis thaliana. Plant Growth Regul 46:45–50

    Article  CAS  Google Scholar 

  3. Schaller A (2004) A cut above the rest: the regulatory function of plant proteases. Planta 220:183–197

    Article  CAS  PubMed  Google Scholar 

  4. Murray DR, Peoples MB, Waters SP (1979) Proteolysis in the axis of the germinating pea seed. I Changes in the protein degradation enzyme activities of the radical and the primary root. Planta 147:111–116

    Article  CAS  PubMed  Google Scholar 

  5. Murray DR, Peoples MB, Waters SP (1979) Proteolysis in the axis of the germinating pea seed. II Changes in polypeptide composition. Planta 147:117–121

    Article  CAS  PubMed  Google Scholar 

  6. Tiedemann J, Neubohn B, Müntz K (2000) Different functions of vicilin and legumin are reflected in the histopattern of globulin mobilization during germination of vetch (Vicia sativa L.). Planta 211:1–12

    Article  CAS  PubMed  Google Scholar 

  7. Schlereth A, Becker C, Horstmann C, Tiedemann J, Müntz K (2000) Comparison of globulin mobilization and cysteine proteinases in embryonic axes and cotyledons during germination and seedling growth of vetch (Vicia sativa L.). J Exp Bot 51:1423–1433

    Article  CAS  PubMed  Google Scholar 

  8. Muccifora S, Guerranti R, Muzzi CH, Hope-Onyekwere NS, Pagani R, Leoncini R, Bellani LM (2010) Ultrastructural and biochemical investigations of protein mobilization of Mucuna pruriens (L.) DC. cotyledons and embryo axis. Protoplasma 239:15–21

    Article  CAS  PubMed  Google Scholar 

  9. Alekseeva MW, Kobarskaya NB (1987) Comparative investigations of proteins from aleurone grains of embryonic axis and cotyledons of pea and soybean (russ.). Fisiol Rastenii 25:464–469

    Google Scholar 

  10. Alekseeva MW, Phoung Lien TT, Charalambous N, Jivotovskaya V (1989) Specificity of subunit composition of storage proteins in embryonic axes and cotyledons of pea seeds (russ.). Fisiol Rastenii 36:740–744

    CAS  Google Scholar 

  11. Vigil EL, Fang TK (1995) Comparative biochemical and morphological changes in imbibed cotton seed hypocotyls and radicles in situ and in vivo- protein breakdown and elongation growth. Seed Sci Res 5:41–51

    CAS  Google Scholar 

  12. Vigil EL, Fang TK (1995) Protease activities and elongation growth of excised cotton seeds during the first 24 hours of imbibition. Seed Sci Res 5:201–207

    CAS  Google Scholar 

  13. Lawrence JM, Grant DR (1963) Nitrogen mobilization in pea seedlings Il. Free amino acids. Plant Physiol 38:561–566

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Rawling ND, Barrett AJ (1994) Classification of peptidases. Methods Enzymol 244:1–15

    Article  Google Scholar 

  15. Huffaker RC (1990) Proteolytic activity during senescence of plant. New Phytol 116:199–223

    Article  CAS  PubMed  Google Scholar 

  16. Brouquisse R, Fisher A, Raymond P (1997) Proteolysis in higher plants: nature, function and regulation. In: Morot-Gaudry JF (eds) Assimilation of nitrogen in plants. Physiol biochem mol aspect, pp 327–350

  17. Tu CJ, Park SY, Walling LL (2003) Isolation and characterization of the neutral leucine aminopeptidase (LAP-N) of tomato. Plant Physiol 132:243–255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Polge C, Jaquinod M, Holzer F, Bourguignon J, Walling L, Brouquisse R (2009) Evidence for the existence in Arabidopsis thaliana of the proteasome proteolytic pathway; activation in response to cadmium. J Biol Chem 284:35412–35424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Salt DE, Rauser WE (1995) Mg-ATP-dependent transport of phytochelatins across the tonoplast of roots. Plant Physiol 170:1293–1301

    Google Scholar 

  20. Ahsan N, Lee DG, Lee SH, Kang KY, Lee JJ, Kim PJ, Yoon HS, Kim JS, Lee BH (2007) Excess copper induced physiological and proteomic changes in germinating rice seeds. Chemosphere 67:1182–1193

    Article  CAS  PubMed  Google Scholar 

  21. Djebali W, Gallusci P, Polge C, Boulila L, Galtier N, Raymond P, Chaibi W, Brouquisse R (2007) Modifications in endopeptidase and 20S proteasome expression and activities in cadmium treated tomato (Solanum lycopersicum L.) plants. Planta 227:625–639

    Article  PubMed  Google Scholar 

  22. Domash VI, Sharpio TP, Zabreiko SA, Sosnovskaya TF (2008) Proteolytic enzymes and trypsin inhibitors of higher plants under stress conditions. Russ J Bioorg Chem 34:318–322

    Article  CAS  Google Scholar 

  23. Sfaxi-Bousbih A, Chaoui A, El Ferjani E (2010) Unsuitable availability of nutrients in germinating bean embryos exposed to copper excess. Biol Trace Elem Res 135:295–303

    Article  CAS  PubMed  Google Scholar 

  24. Karmous I, El Ferjani E, Chaoui A (2011) Copper excess impairs mobilization of storage proteins in bean cotyledons. Biol Trace Elem Res 144:1251–1259

    Article  CAS  PubMed  Google Scholar 

  25. Karmous I, Jaouani K, Chaoui A, El Ferjani E (2012) Proteolytic activities in Phaseolus vulgaris cotyledons under copper stress. Physiol Mol Biol Plants 18:337–343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Bishnoi NR, Sheroran IS, Singh R (1993) Effect of cadmium and nickel on mobilization of food reserves and activities of hydrolytic enzymes in germinating pigeon pea seeds. Biol Plant 35:583–589

    Article  CAS  Google Scholar 

  27. Shah K, Dubey RS (1997) Effect of cadmium on proteins, amino acids and protease, aminopeptidase and carboxypeptidase in rice seedlings. Plant Physiol Biochem 33:577–584

    Google Scholar 

  28. Kuriakose SV, Prasad MNV (2008) Cadmium stress affects seed germination and seedling growth in Sorghum bicolor (L.) Moench by changing the activities of hydrolyzing enzymes. Plant Growth Regul 54:143–156

    Article  CAS  Google Scholar 

  29. Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    Article  Google Scholar 

  30. Palma JM, Sandalio LM, Javier Corpas F, Romero-Puertas MC, McCarthy I, Del Rio LA (2002) Plant proteases, protein degradation, and oxidative stress: role of peroxisomes. Plant Physiol Biochem 40:521–530

    Article  CAS  Google Scholar 

  31. Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    Article  CAS  PubMed  Google Scholar 

  32. Stadtman ER (1993) Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu Rev Biochem 62:797–891

    Article  CAS  PubMed  Google Scholar 

  33. Davies KJA (2001) Degradation of oxidized proteins by the 20 S proteasome. Biochimie 83:301–310

    Article  CAS  PubMed  Google Scholar 

  34. Müntz K (1996) Proteases and proteolytic cleavage of storage proteins in developing and germinating dicotyledonous seeds. J Exp Bot 47:605–622

    Article  Google Scholar 

  35. Voigt G, Biehl B, Heinrichs H, Voigt J (1997) Aspartic proteinase levels in seeds of different angiosperms. Phytochemistry 444:389–392

    Article  Google Scholar 

  36. Sutoh K, Kato H, Minamikawa T (1999) Identification and possible roles of three types of endopeptidase from germinated wheat seeds. J Biochem 126:700–707

    Article  CAS  PubMed  Google Scholar 

  37. Mutlu A, Gal S (1999) Plant aspartic proteinases: enzymes on the way to a function. Physiol Plant 105:569–576

    Article  CAS  Google Scholar 

  38. Nguyen CV, Bielawski W, Kaczkowski J (1995) Distribution of endopeptidases in germinating triticale grains susceptible and resistant to pre-harvest sprouting. Acta Physiol Plant 17:9–16

    Google Scholar 

  39. Nielsen S, Liener IE (1984) Degradation of the major storage protein of Phaseolus vulgaris during germination: role of endogenous proteases and protease inhibitors. Plant Physiol 74:494–498

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Shutov AD, Vaintraub IA (1987) Degradation of storage proteins in germinating seeds. Phytochemistry 26:1557–1566

    Article  CAS  Google Scholar 

  41. Belozersky MA, Dunaevsky YE, Voskoboynikova E (1990) Isolation and properties of a metalloproteinase from buckwheat (Fagopyrum esculentum) seeds. Biochem J 272:677–682

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Karmous I, Chaoui A, Jaouani K, Sheehan D, El Ferjani E, Scoccianti V, Crinelli R (2014) Role of the ubiquitin-proteasome pathway and some peptidases during seed germination and copper stress in bean cotyledons. Plant Physiol Biochem 76:77–85

    Article  CAS  PubMed  Google Scholar 

  43. Mikkonen A (1986) Activities of some peptidases and proteinases in germinating kidney bean Phaseolus vulgaris. Physiol Plant 68:282–286

    Article  CAS  Google Scholar 

  44. Preston KR, Kruger JE (1986) Mobilization of monocot protein reserves during germination. In: Dalling MJ (ed) Plant proteolytic enzymes. Vol. 1. CRC Press, Boca Raton, pp 1–18

    Google Scholar 

  45. Dietz KJ, Brune A, Pfanz H (1992) Transtonoplast-transport of the sulfur-containing compounds sulfate, cysteine, methionine and glutathione. Phyton Austria 32:37–40

    CAS  Google Scholar 

  46. Wolf AE, Dietz KJ, Schrӧder P (1996) Degradation of glutathione S-conjugates by a carboxypeptidase in the plant vacuole. FEBS Lett 384:31–34

    Article  CAS  PubMed  Google Scholar 

  47. Mehta RA, Warmbardt RD, Mattoo AK (1996) Tomato fruit carboxypeptidase; properties, induction upon wounding, and immunocytochemical localization. Plant Physiol 110:883–892

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Boulila-Zoghlami L, Gallusci P, Holzer FM, Basset GJ, Djebali W, Chaïbi W, Walling LL, Brouquisse R (2011) Up-regulation of leucine aminopeptidase-A in cadmium-treated tomato roots. Planta 234:4857–4863

    Article  Google Scholar 

  49. Lomate PR, Hivrale VK (2011) Induction of leucine aminopeptidase (LAP) like activity with wounding and methyl jasmonate in pigeon pea (Cajanas cajan) suggests the role of these enzymes in plant defense in leguminosae. Plant Physiol Biochem 49:6609–6616

    Article  Google Scholar 

  50. Lomate PR, Hivrale VK (2011) Changes and induction of aminopeptidase activities in response to pathogen infection during germination of pigeon pea (Cajanas cajan) seeds. J Plant Physiol 168:1735–1742

    Article  CAS  PubMed  Google Scholar 

  51. Kitazono A, Ito K, Yoshimoto T (1994) Prolyl aminopeptidase is not a sulfhydryl enzyme: identification of the active serine residue by site-directed mutagenesis. J Biochem 116:943–945

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financed by the Tunisian Ministry of Higher Education and Scientific Research (UR/11/ES-32).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inès Karmous.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmous, I., Jaouani, K., El Ferjani, E. et al. Responses of Proteolytic Enzymes in Embryonic Axes of Germinating Bean Seeds under Copper Stress. Biol Trace Elem Res 160, 108–115 (2014). https://doi.org/10.1007/s12011-014-0020-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0020-x

Keywords

Navigation