Skip to main content
Log in

Zinc Deficiency Enhances the Induction of Micronuclei and 8-Hydroxy-2′-Deoxyguanosine Via Superoxide Radical in Bone Marrow of Zinc-Deficient Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The aim of the present study was to examine whether zinc (Zn) deficiency augmented the frequency of micronuclei, an indicator of chromosome aberration, and the induction of 8-hydroxy-2′-deoxyguanosine (8-OHdG), a marker of cellular DNA damage derived from oxidative stress, in rat bone marrow cells or not. Both the frequency of micronuclei and the induction of 8-OHdG were significantly increased in rats fed with a Zn-deficient versus a standard diet for 6 weeks (p < 0.005). The supplementation of Zn with a standard diet for 4 weeks to rats fed with a Zn-deficient diet for 6 weeks restored the enhanced induction of micronuclei and 8-OHdG to levels comparable to those seen in rats fed with a standard diet for 10 weeks, indicating that the shortage of Zn in the body is involved in the induction of micronuclei and 8-OHdG. Again, the membrane-permeable superoxide dismutase mimetic superoxide scavenger, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl, treatment (100 μmol/kg, twice a day) for 10 days prior to the termination of dietary treatment reduced the induction of micronuclei and 8-OHdG in rats fed with a Zn-deficient diet for 6 weeks to levels comparable to those in rats fed with a standard diet for 6 weeks, indicating that superoxide radical participates in the induction of micronuclei and 8-OHdG. In fact, the endogenous superoxide scavenger, Cu/Zn superoxide dismutase, was significantly reduced in the bone marrow cells of rats fed with a Zn-deficient diet for 6 weeks when compared to those of rats fed with a standard diet for 6 weeks (p < 0.005). These observations demonstrate that Zn deficiency elevates the frequency of micronuclei and the induction of 8-OHdG through an increase in the biological action of the superoxide radical. This suggests an increase in carcinogenic initiation resulting from Zn deficiency-induced oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73:79–118

    Article  PubMed  CAS  Google Scholar 

  2. Yanagisawa H (2008) Zinc deficiency and clinical practice—validity of zinc preparations. Yakugaku Zasshi 123(3):333–339

    Article  Google Scholar 

  3. Kubori S, Kurasawa R, Okada S, Kamioka H, Kogirima M, Takano S, Yamaura E (2006) Differences in the serum level of rural and urban residents in a city in the central part of Japan, examined at annual community-wide health examination. Biomed Res Trace Elem 17:335–338

    CAS  Google Scholar 

  4. Bruce NA (2001) DNA damage from micronutrient deficiencies is likely to be a major cause of cancer. Mutat Res 475:7–20

    Article  Google Scholar 

  5. Ho E, Ames BN (2002) Low intracellular zinc induces oxidative DNA damage, disrupts p53, NFκB, and AP1 DNA binding, and affects DNA repair in a rat glioma cell line. Proc Natl Acad Sci 99:16770–16775

    Article  PubMed  CAS  Google Scholar 

  6. Ho E (2004) Zinc deficiency, DNA damage and cancer risk. J Nutr Biochem 15:572–578

    Article  PubMed  CAS  Google Scholar 

  7. Song Y, Leonard SW, Traber MG, Ho E (2009) Zinc deficiency affects DNA damage, oxidative stress, antioxidant defenses, and DNA repair in rats. J Nutr 139(9):1626

    Article  PubMed  CAS  Google Scholar 

  8. Wan S-G, Taccioli C, Jiang Y, Chen H, Smalley KJ, Huang K, Liu XP, Farber JL, Croce CM, Fong LY (2010) Zinc deficiency activates S100A8 inflammation in the absence of COX-2 and promotes murine oral–esophageal tumor progression. Int J Cancer 129:331–345

    Article  PubMed  Google Scholar 

  9. Taccioli C, Chen H, Jiang Y, Liu XP, Huang K, Smalley KJ, Farber JL, Croce CM, Fong LY (2012) Dietary zinc deficiency fuels esophageal cancer development by inducing a distinct inflammatory signature. Oncogene 31(42):4550–4558. doi:10.1038/onc.2011.592

    Article  PubMed  CAS  Google Scholar 

  10. Kurihara N, Yanagisawa H, Sato M, Tien CK, Wada O (2002) Increased renal vascular resistance in zinc-deficient rats: role of nitric oxide and superoxide. Clin Exp Pharmacol P 29:1096–1104

    Article  CAS  Google Scholar 

  11. Sato M, Yanagisawa H, Nojima Y, Tamura J, Wada O (2002) Zn deficiency aggravates hypertension in spontaneously hypertensive rats: possible role of Cu/Zn-superoxide dismutase. Clin Exp Hypertens 24(5):355–370

    Article  PubMed  CAS  Google Scholar 

  12. Naziroğlu M (2007) New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADP-ribose. Neurochem Res 32:1990–2001

    Article  PubMed  Google Scholar 

  13. Wogan GN, Hecht SS, Felton JS, Conney AH, Loeb LA (2004) Environmental and chemical carcinogenesis. Semin Cancer Biol 14(6):473–486

    Article  PubMed  CAS  Google Scholar 

  14. Hernández LG, van Steeg H, Lujiten M, van Benthem J (2009) Mechanisms of non-genotoxic carcinogens and importance of a weight of evidence approach. Mutat Res 682(2–3):94–109

    PubMed  Google Scholar 

  15. Yanagisawa H, Moridaira K, Wada O (2000) Zinc deficiency further increases the enhanced expression of endothelin-1 in glomeruli of the obstructed kidney. Kidney Int 58:575–586

    Article  PubMed  CAS  Google Scholar 

  16. Yanagisawa H, Sato M, Nodera M, Wada O (2004) Excessive zinc intake elevates systemic blood pressure levels in normotensive rats—potential role of superoxide-induced oxidative stress. J Hypertens 22:543–550

    Article  PubMed  CAS  Google Scholar 

  17. Miyakoshi Y, Kajihara C, Shimizu H, Yanagisawa H (2012) Tempol suppresses micronuclei formation in astrocytes of newborn rats exposed to 50-Hz, 10-mT electromagnetic fields under bleomycin administration. Mutat Res-Genet Toxicol Environ 747:138–141

    Article  CAS  Google Scholar 

  18. Suzuki Y, Takagi R, Kawasaki I, Matsudaira T, Yanagisawa H, Shimizu H (2008) The micronucleus test and erythropoiesis: effects of cyclic adenosine monophosphate (cAMP) on micronucleus formation. Mutat Res-Genet Toxicol Environ 655:47–51

    Article  CAS  Google Scholar 

  19. Higurashi K, Iizuka N, Yoshimura H, Tanaka T, Nomoto S (2007) Evaluation of colorimetric method for zinc, using clinical chemistry analyzer. Biomed Res Trace Elem 18:380–385

    CAS  Google Scholar 

  20. Schmid W (1976) The micronucleus test for cytogenetic analysis. In: Hollaender A (ed) Chemical mutagenesis, vol. 4. Plenum, New York, pp 31–53

    Google Scholar 

  21. Suzuki Y, Shimizu H, Nagae Y, Fukumoto M, Okonogi H, Kadokura M (1993) The micronucleus test and erythropoiesis. Effect of cobalt on the induction of micronuclei by mutagens. Environ Mol Mutagen 22:101–106

    Article  PubMed  CAS  Google Scholar 

  22. Suzuki Y, Shimizu H, Ishikawa T, Sakaba H, Fukumoto M, Okonogi H, Kadokura M (1994) Effects of prostaglandin E2 on the micronucleus formation in mouse bone marrow cells by various mutagens. Mutat Res 311:287–293

    Article  PubMed  CAS  Google Scholar 

  23. Takagi R, Suzuki Y, Seki Y, Ikehata M, Kajihara C, Shimizu H, Yanagisawa H (2011) Indium chloride-induced micronuclei in vivo and in vitro experimental systems. J Occup Health 53:102–109

    Article  PubMed  CAS  Google Scholar 

  24. Nebot C, Moutet M, Huet P, Xu JZ, Yadan JC, Chaudiere J (1993) Spectrophotometric assay of superoxide dismutase activity based on the activated autoxidation of a tetracyclic catechol. Anal Biochem 214(2):442–451

    Article  PubMed  CAS  Google Scholar 

  25. Yoshida D, Ikeda Y, Nakazawa S (1993) Suppression of 9L gliosarcoma growth by copper depletion with copper-deficient diet and d-penicillamine. J Neuro-Oncol 17:91–97

    Article  CAS  Google Scholar 

  26. Jing MY, Sun JY, Weng XY, Wang JF (2008) Effects of Zn levels on activities of gastrointestinal enzymes in growing rats. J Anim Physiol An N (Berl) 93:606–612

    Article  Google Scholar 

  27. MacGregor JT (1990) Dietary factors affecting spontaneous chromosomal damage in man. Clin Biol Res 347:139–153

    CAS  Google Scholar 

  28. Naziroğlu M (2009) Role of selenium on calcium signaling and oxidative stress-induced molecular pathways in epilepsy. Neurochem Res 34(12):2181–2191

    Article  PubMed  Google Scholar 

  29. Naziroğlu M, Dikici DM, Dursun S (2012) Role of oxidative stress and Ca2+ signaling on molecular pathways of neuropathic pain in diabetes: focus on TRP channels. Neurochem Res 37(10):2065–2075

    Article  PubMed  Google Scholar 

  30. Taysi S, Cikman O, Kaya A, Demircan B, Gumustekin K, Yilmaz A, Boyuk A, Keles M, Akyuz M, Turkeli M (2008) Increased oxidant stress and decreased antioxidant status in erythrocytes of rats fed with zinc-deficient diet. Biol Trace Elem Res 123:161–167

    Article  PubMed  CAS  Google Scholar 

  31. Lewinska A, Wnuk M, Slota E, Bartosz G (2008) The nitroxide antioxidant tempol affects metal-induced cyto- and genotoxicity in human lymphocytes in vitro. Mutat Res-Genet Toxicol Environ 649:7–14

    Article  CAS  Google Scholar 

  32. Sinha D, Roy M (2011) Antagonistic role of tea against sodium arsenite-induced oxidative DNA damage and inhibition of DNA repair in Swiss albino mice. J Environ Pathol Toxicol Oncol 300(4):311–322

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants (no. 21590715) for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Conflict of Interest Statement

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Yanagisawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawasaki, I., Suzuki, Y. & Yanagisawa, H. Zinc Deficiency Enhances the Induction of Micronuclei and 8-Hydroxy-2′-Deoxyguanosine Via Superoxide Radical in Bone Marrow of Zinc-Deficient Rats. Biol Trace Elem Res 154, 120–126 (2013). https://doi.org/10.1007/s12011-013-9706-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-013-9706-8

Keywords

Navigation