Skip to main content
Log in

The Alteration of MiR-222 and Its Target Genes in Nickel-Induced Tumor

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Nickel is an important kind of metal and a necessary trace element in people’s production and livelihood; it is also a well-confirmed human carcinogen. In the past few years, researchers did a large number of studies about the molecular mechanisms of nickel carcinogenesis, and they focused on activation of proto-oncogenes and inactivation of anti-oncogenes caused by gene point mutation, gene deletion, gene amplification, DNA methylation, chromosome condensation, and so on that were induced by nickel. However, the researches on tumorigenic molecular mechanisms regulated by microRNAs (miRNAs) are rare. In this study, we established nickel-induced tumor by injecting Ni3S2 compounds to Wistar Rattus. By establishing a cDNA library of miRNA from rat muscle tumor tissue induced by Ni3S2, we found that the expression of miR-222 was significantly upregulated in tumor tissue compared with the normal tissue. As we expected, the expression levels of target genes of miR-222, CDKN1B and CDKN1C, were downregulated in the nickel-induced tumor. The same alteration of miR-222 and its target genes was also found in malignant 16HBE cells induced with Ni3S2 compounds. We conclude that miR-222 may promote cell proliferation infinitely during nickel-induced tumorigenesis in part by regulating the expression of its target genes CDKN1B and CDKN1C. Our study elucidated a novel molecular mechanism of nickel-induced tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li Q, Suen TC, Sun H, Arita A, Costa M (2009) Nickel compounds induce apoptosis in human bronchial epithelial Beas-2B cells by activation of c-Myc through ERK pathway. Toxicol Appl Pharmacol 235:191–198

    Article  PubMed  CAS  Google Scholar 

  2. Doll R, Morgan LG, Speizer FE (1970) Cancers of the lung and nasal sinuses in nickel workers. Br J Cancer 24:623–632

    Article  PubMed  CAS  Google Scholar 

  3. Sutherland JE, Peng W, Zhang QW, Costa M (2001) The histone deacetylase inhibitor trichostatin A reduces nickel-induced gene silencing in yeast and mammalian cells. Mutat Res Fundam Mol Mech Mutagen 479:225–233

    Article  CAS  Google Scholar 

  4. Costa M, Davidson TL, Chen HB, Ke QD, Zhang P, Yan Y et al (2005) Nickel carcinogenesis: epigenetics and hypoxia signaling. Mutat Res Fundam Mol Mech Mutagen 592:79–88

    Article  CAS  Google Scholar 

  5. Bartel DP (2007) MicroRNAs: genomics, biogenesis, mechanism, and function (reprinted from Cell, vol 116, pg 281–297, 2004). Cell 131:11–29

    Google Scholar 

  6. Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6:259–269

    Article  PubMed  CAS  Google Scholar 

  7. Fornari F, Gramantieri L, Ferracin M, Veronese A, Sabbioni S et al (2008) MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene 27:5651–5661

    Article  PubMed  CAS  Google Scholar 

  8. Ohmori T, Okada K, Terada M, Tabei R (1999) Low susceptibility of specific inbred colonies of rats to nickel tumorigenesis in soft tissue. Cancer Lett 136:53–58

    Article  PubMed  CAS  Google Scholar 

  9. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  10. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798

    Article  PubMed  CAS  Google Scholar 

  11. Wang WC, Shi CY, Zhang JS, Gu WT, Li TJ, Gen MM, Chu WY, Huang RL, Liu YL, Hou YQ, Li P, Yin YL (2009) Molecular cloning, distribution and ontogenetic expression of the oligopeptide transporter PepT1 mRNA in Tibetan suckling piglets. Amino Acids 37:593–601

    Article  PubMed  CAS  Google Scholar 

  12. Lee Y-W, Broday L, Costa M (1998) Effects of nickel on DNA methyltransferase activity and genomic DNA methylation levels. Mutat Res 3:213–218

    Google Scholar 

  13. Golebiowski F, Kasprzak KS (2005) Inhibition of core histones acetylation by carcinogenic nickel(II). Mol Cell Biochem 279:133–139

    Article  PubMed  CAS  Google Scholar 

  14. Yan Y, Kluz T, Zhang P, Chen H-b, Costa M (2003) Analysis of specific lysine histone H3 and H4 acetylation and methylation status in clones of cells with a gene silenced by nickel exposure. Toxicol Appl Pharmacol 3:272–277

    Article  Google Scholar 

  15. Huang X, Zhuang Z, KF R, C B K, M C (1994) The role of nickel and nickel-mediated reactive oxygen species in the mechanism of nickel carcinogenesis. Environ Health Perspect 120:281–284

    Google Scholar 

  16. Zhou D, Salnikow K, Costa M (1998) Cap43, a novel gene specifically induced by Ni2+ compounds. Cancer Res 58(10):2182–2189

    PubMed  CAS  Google Scholar 

  17. Calin GA et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 105:7004–7009

    Google Scholar 

  18. Zhang B, Pan X, Cobb GP, Anderson TA (2007) MicroRNAs as oncogenes and tumor suppressors. Dev Biol 302:1–12

    Article  PubMed  CAS  Google Scholar 

  19. Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, Yatabe Y, Kawahara K, Sekido Y, Takahashi T (2005) A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65:9628–9632

    Article  PubMed  CAS  Google Scholar 

  20. Bottoni A, Piccin D, Tagliati F, Luchin A, Zatelli MC, degli Uberti EC (2005) MiR-15a and miR-16-1 down-regulation in pituitary adenomas. J Cell Physiol 204:280–285

    Article  PubMed  CAS  Google Scholar 

  21. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99:15524–15529

    Article  PubMed  CAS  Google Scholar 

  22. Tang J-T, Wang J-L, Wan D, Hong J, Zhao S-L, Wang Y-C, Xiong H, Chen H-M, Fang J-Y (2011) MicroRNA 345, a methylation-sensitive microRNA is involved in cell proliferation and invasion in human colorectal cancer. Carcinogenesis 8:1207–1215

    Article  Google Scholar 

  23. Weber B, Stresemann C, Brueckner B, Lyko F (2007) Methylation of human microRNA genes in normal and neoplastic cells. Cell Cycle 6:1001–1005

    Article  PubMed  CAS  Google Scholar 

  24. Shen HM, Zhang QF (1994) Risk assessment of nickel carcinogenicity and occupational lung cancer. Environ Health Perspect 102(Suppl 1):275–282

    Article  PubMed  CAS  Google Scholar 

  25. Grimsrud TK, Berge SR, Haldorsen T, Andersen A (2002) Exposure to different forms of nickel and risk of lung cancer. Am J Epidemiol 156(12):1123–1132

    Article  PubMed  Google Scholar 

  26. Gao W, Shen H, Liu L, Jian X, Jing X, Shu Y (2011) MiR-21 overexpression in human primary squamous cell lung carcinoma is associated with poor patient prognosis. Cancer Res Clin Oncol 4:557–566

    Article  Google Scholar 

  27. Gang Y, Guodong F, Cui S, Zhao S, Bernaudo S, Bai Y, Ding Y, Zhang Y, Yang BB, Peng C (2011) MicroRNA 376c enhances ovarian cancer cell survival by targeting activin receptor-like kinase7: implications for chemoresistance. Cell Science 124:359–368

    Article  Google Scholar 

  28. Hwang J-H, Voortman J, Giovannetti E, Steinberg SM, Leon LG et al (2010) Identification of microRNA-21 as a biomarker for chemoresistance and clinical outcome following adjuvant therapy in resectable pancreatic cancer. PLoS One 5(5):e10630

    Article  PubMed  Google Scholar 

  29. Carlos le S, Nagel R, Egan DA, Schrie M, Mesman E, Mangiola A, Anile C, Maira G, Mercatelli N, Ciafrè SA, Farace MG, Agami R (2007) Regulation of the p27Kip1 tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J 26:3699–3708

    Article  Google Scholar 

  30. Sun K, Wang W, Zeng J-j, Cheng-tang W, Lei S-t, Li G-x (2011) MicroRNA-221 inhibits CDKN1C/p57 expression in human colorectal carcinoma. Acta Pharmacologica Sinica 32:375–384

    Article  PubMed  CAS  Google Scholar 

  31. Lee MH, Reynisdottir I, Massague J (1995) Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev 9:639–649

    Article  PubMed  CAS  Google Scholar 

  32. Matsuoka S, Edwards MC, Bai C, Parker S, Zhang P, Baldini A et al (1995) p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev 9:650–662

    Article  PubMed  CAS  Google Scholar 

  33. Susaki E, Nakayama KI (2009) Functional similarities and uniqueness of p27 and p57: insight from a knock-in mouse model. Cell Cycle 8:2497–2501

    Article  PubMed  CAS  Google Scholar 

  34. le Sage C, Nagel R, Egan DA, Schrier M, Mesman E, Mangiola A et al (2007) Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J 26:3699–3708

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Lijuan Zhang for kindly providing 16HBE cell line to our laboratory. This work was supported by the Natural Science Foundation of China (31271120, 31171012, and 81041069), National Key Basic Research Program of China (2011CB965102), and International Cooperation Program of the Ministry of Science and Technology of China (2011DFA30480 and 2011DFB30010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Zhang or Jun Zhang.

Additional information

Jing Zhang, Yang Zhou, and Lin Ma contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Zhou, Y., Ma, L. et al. The Alteration of MiR-222 and Its Target Genes in Nickel-Induced Tumor. Biol Trace Elem Res 152, 267–274 (2013). https://doi.org/10.1007/s12011-013-9619-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-013-9619-6

Keywords

Navigation