Skip to main content

Advertisement

Log in

Oxidative Stress and Paraoxonase Activity in Experimental Selenosis: Effects of Betaine Administration

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The present study was undertaken on male rats to elucidate the selenosis induced by sodium selenite and the role played by betaine in alleviating selenium toxicity. Rats were treated with sodium selenite (6 mg/kg body weight/day) with or without betaine (240 mg/kg body weight/day). Selenotoxicosis was evident from the elevated plasma levels of total bilirubin, transaminases, and alkaline phosphatase activities. Moreover, the total protein levels decreased, and this decrease associated with a decreased albumin level, whereas the globulin level increased in selenium-intoxicated rats. The development of selenosis corresponded well with the induction of oxidative stress evident from decrease of total thiol level and glutathione content. Furthermore, activities of glutathione reductase, glucose-6-phosphate dehydrogenase, catalase, and paraoxonase-1 were decreased in selenium-treated rats. In contrast, superoxide dismutase and glutathione peroxidase activities were increased by excess selenium administration compared with control animals. As well, malondialdehyde and protein carbonyl were elevated in rats treated with selenium. Supplementation of betaine simultaneously with selenium caused less marked alteration in the investigated parameters. Betaine attenuated the selenotoxicosis by restoring thiol levels that preserve enzymatic antioxidants activity and attenuate the oxidation of lipids and proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kim YY, Mahan DC (2001) Comparative effects of high dietary levels of organic and inorganic selenium on selenium toxicity of growing-finishing pigs. J Anim Sci 79:942–948

    PubMed  CAS  Google Scholar 

  2. Tinggi U (2003) Essentiality and toxicity of selenium and its status in Australia: a review. Toxicol Lett 137(1–2):103–110

    Article  PubMed  CAS  Google Scholar 

  3. Aldosary BM, Sutter ME, Schwartz M, Morgan BW (2012) Case series of selenium toxicity from a nutritional supplement. Clin Toxicol (Phila) 50(1):57–64

    Article  CAS  Google Scholar 

  4. Lemire M, Philibert A, Fillion M, Passos CJ, Guimarães JR, Barbosa F Jr, Mergler D (2012) No evidence of selenosis from a selenium-rich diet in the Brazilian Amazon. Environ Int 40:128–136

    Article  PubMed  CAS  Google Scholar 

  5. MacFarquhar JK, Broussard DL, Melstrom P, Hutchinson R, Wolkin A, Martin C, Burk RF, Dunn JR, Green AL, Hammond R, Schaffner W, Jones TF (2010) Acute selenium toxicity associated with a dietary supplement. Arch Intern Med 170(3):256–261

    Article  PubMed  Google Scholar 

  6. Balogh K, Weber M, Erdelyi M, Mezes M (2004) Effect of excess selenium supplementation on the glutathione redox system in broiler chicken. Acta Vet Hung 52(4):403–411

    Article  PubMed  CAS  Google Scholar 

  7. Hamilton SJ (2002) Rationale for a tissue-based selenium criterion for aquatic life. Aquat Toxicol 57:85–100

    Article  PubMed  CAS  Google Scholar 

  8. Manikandan R, Thiagarajan R, Beulaja S, Sudhandiran G, Arumugam M (2010) Curcumin protects against hepatic and renal injuries mediated by inducible nitric oxide synthase during selenium-induced toxicity in Wistar rats. Microsc Res Tech 73(6):631–637

    PubMed  CAS  Google Scholar 

  9. Gad MA, Abd El-Twab SM (2009) Selenium toxicosis assessment (in vivo and in vitro) and the protective role of vitamin B12 in male quail (Coturnix coturnix). Environ Toxicol Pharmacol 27(1):7–16

    Article  PubMed  CAS  Google Scholar 

  10. Nazıroglu M (2009) Role of selenium on calcium signaling and oxidative stress-induced molecular pathways in epilepsy. Neurochem Res 34(12):2181–2191

    Article  PubMed  Google Scholar 

  11. Shen HM, Yang C, Liu J, Ong C (2000) Dual role of glutathione in selenite-induced oxidative stress and apoptosis in human hepatoma cells. Free Rad Biol Med 28:1115–1124

    Article  PubMed  CAS  Google Scholar 

  12. Kutluhan S, Naziroğlu M, Celik O, Yilmaz M (2009) Effects of selenium and topiramate on lipid peroxidation and antioxidant vitamin levels in blood of pentylentetrazol-induced epileptic rats. Biol Trace Elem Res 129(1–3):181–189

    Article  PubMed  CAS  Google Scholar 

  13. Camps J, Marsillach J, Joven J (2009) Measurement of serum paraoxonase-1 activity in the evaluation of liver function. World J Gastroenterol 15(16):1929–1933

    Article  PubMed  CAS  Google Scholar 

  14. Gupta N, Porter TD (2002) Inhibition of human squalene monooxygenase by selenium compounds. J Biochem Mol Toxicol 16(1):18–23

    Article  PubMed  CAS  Google Scholar 

  15. Grewal SI, Rice JC (2004) Regulation of heterochromatin by histone methylation and small RNAs. Curr Opin Cell Biol 16(3):230–238

    Article  PubMed  CAS  Google Scholar 

  16. Kim SK, Seo JM, Chae YR, Jung YS, Park JH, Kim YC (2009) Alleviation of dimethylnitrosamine-induced liver injury and fibrosis by betaine supplementation in rats. Chem Biol Interact 177(3):204–211

    Article  PubMed  CAS  Google Scholar 

  17. Alirezaei M, Jelodar G, Niknam P, Ghayemi Z, Nazifi S (2011) Betaine prevents ethanol-induced oxidative stress and reduces total homocysteine in the rat cerebellum. J Physiol Biochem 67(4):605–612

    Article  PubMed  CAS  Google Scholar 

  18. Erman F, Balkan J, Cevikbas U, Kocak-Toker N, Uysal M (2004) Betaine or taurine administration prevents fibrosis and lipid peroxidation induced by rat liver by ethanol plus carbon tetrachloride intoxication. Amino Acids 27:199–205

    Article  PubMed  CAS  Google Scholar 

  19. Stranges S, Laclaustra M, Ji C, Cappuccio FP, Navas-Acien A, Ordovas JM, Rayman M, Guallar E (2010) Higher selenium status is associated with adverse blood lipid profile in British adults. J Nutr 140:81–87

    Article  PubMed  CAS  Google Scholar 

  20. Ganesan B, Buddhan S, Anandan R, Sivakumar R, AnbinEzhilan R (2010) Antioxidant defense of betaine against isoprenaline-induced myocardial infarction in rats. Mol Biol Rep 37(3):1319–1327

    Article  PubMed  CAS  Google Scholar 

  21. Hoffman DJ (2002) Role of selenium toxicity and oxidative stress in aquatic birds. Aquat Toxicol 57(1):11–17

    Article  PubMed  CAS  Google Scholar 

  22. Schlenk D, Zubcov N, Zubcov E (2003) Effects of salinity on the uptake, biotransformation, and toxicity of dietary seleno-l-methionine to rainbow trout. Toxicol Sci 75:309–313

    Article  PubMed  CAS  Google Scholar 

  23. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  PubMed  CAS  Google Scholar 

  24. Koster JF, Biemond P, Swaak AJ (1986) Intracellular and extracellular sulphydryl levels in rheumatoid arthritis. Ann Rheum Dis 45:44–46

    Article  PubMed  CAS  Google Scholar 

  25. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  26. Levine L, Williams J, Stadtman R, Shacter E (1994) Carbonyl assay for determination of oxidatively modified proteins. Methods Enzymol 233:346–357

    Article  PubMed  CAS  Google Scholar 

  27. Ayub A, Mackness MI, Arrol S, Mackness B, Patel J, Durrington PN (1999) Serum paraoxonase after myocardial infarction. Arterioscler Thromb Vasc Biol 19(2):330–335

    Article  PubMed  CAS  Google Scholar 

  28. Balinsky D, Bernstein RE (1963) The purification and properties of glucose-6-phosphate dehydrogenase from human erythrocytes. Biochem Biophys Acta 67:313–315

    Article  PubMed  CAS  Google Scholar 

  29. Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 13:484–499

    Article  Google Scholar 

  30. Aebi H (1984) Catalase in vitro. In: Packer L (ed) Methods Enzymol, 105. Academic Press. Inc, Orlando, pp 121–126

    Google Scholar 

  31. Rotruck JT, Rope AL, Ganther HF, Swason AB (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590

    Article  PubMed  CAS  Google Scholar 

  32. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acryl amide gels. Anal Biochem 44(1):276–287

    Article  PubMed  CAS  Google Scholar 

  33. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193(1):265–275

    PubMed  CAS  Google Scholar 

  34. dos Santos LD, de Oliveira CV, Mascarenhas M, Guerra RB, Dani C, Coitinho A, Gomez R, Funchal C (2012) Acute administration of the organochalcogen 3-methyl-1-phenyl-2-(phenylseleno)oct-2-en-1-one induces biochemical and hematological disorders in male rats. Cell Biochem Funct 30(4):315–319

    Article  Google Scholar 

  35. Yağci R, Aydin B, Erdurmuş M, Karadağ R, Gürel A, Durmuş M, Yiğitoğlu R (2006) Use of melatonin to prevent selenite-induced cataract formation in rat eyes. Curr Eye Res 31(10):845–850

    Article  PubMed  Google Scholar 

  36. Varatharajalu R, Garige M, Leckey LC, Gong M, Lakshman MR (2010) Betaine protects chronic alcohol and omega-3 PUFA-mediated down-regulations of PON1 gene, serum PON1 and homocysteine thiolactonase activities with restoration of liver GSH. Alcohol Clin Exp Res 34(3):424–431

    Article  PubMed  CAS  Google Scholar 

  37. Craig SA (2004) Betaine in human nutrition. Am J Clin Nutr 80:539–549

    PubMed  CAS  Google Scholar 

  38. Panter KE, Hartley WJ, James LF, Mayland HF, Stegelmeier BL, Kechele PO (1996) Comparative toxicity of selenium from seleno-dl-methionine, sodium selenate, and astragalusbisulcatus in pigs. Fundam Appl Toxicol 32(2):217–223

    Article  PubMed  CAS  Google Scholar 

  39. Spallholz JE, Hoffman DJ (2002) Selenium toxicity: cause and effects in aquatic birds. Aquat Toxicol 57:27–37

    Article  PubMed  CAS  Google Scholar 

  40. Zhang J, Wang H, Yan X, Zhang L (2005) Comparison of short-term toxicity between nano-selenium and selenite in mice. Life Sci 76(10):1099–1109

    Article  PubMed  CAS  Google Scholar 

  41. Ferre N, Camps J, Cabre M, Paul A, Joven J (2001) Hepatic paraoxonase activity alterations and free radical production in rats with experimental cirrhosis. Metabolism 50:997–1000

    Article  PubMed  CAS  Google Scholar 

  42. Renugadevi J, Prabu SM (2009) Naringenin protects against cadmium-induced oxidative renal dysfunction in rats. Toxicology 256(1–2):128–134

    Article  PubMed  CAS  Google Scholar 

  43. Yilmaz N (2012) Relationship between paraoxonase and homocysteine: crossroads of oxidative diseases. Arch Med Sci 8(1):138–153

    Article  PubMed  CAS  Google Scholar 

  44. Soudani N, Sefi M, Ben Amara I, Boudawara T, Zeghal N (2010) Protective effects of selenium (Se) on chromium (VI) induced nephrotoxicity in adult rats. Ecotoxicol Environ Saf 73(4):671–678

    Article  PubMed  CAS  Google Scholar 

  45. Stephensen CB, Marquis GS, Douglas SD, Kruzich LA, Wilson CM (2007) Glutathione, glutathione peroxidase, and selenium status in HIV-positive and HIV-negative adolescents and young adults. Am J Clin Nutr 85(1):173–181

    PubMed  CAS  Google Scholar 

  46. Pari L, Amudha K (2011) Hepatoprotective role of naringin on nickel-induced toxicity in male Wistar rats. Eur J Pharmacol 650(1):364–370

    Article  PubMed  CAS  Google Scholar 

  47. Kharbanda KK, Mailliard ME, Baldwin CR, Beckenhauer HC, Sorrell MF, Tuma DJ (2007) Betaine attenuates alcoholic steatosis by restoring phosphatidylcholine generation via the phosphatidylethanolaminemethyltransferase pathway. J Hepatol 46:314–321

    Article  PubMed  CAS  Google Scholar 

  48. Balkan J, Oztezcan S, Kucuk M, Cevikbas U, Kocak-Toker N, Uysal M (2004) The effect of betaine treatment on triglyceride levels and oxidative stress in the liver of ethanol-treated guinea pigs. Exp Toxicol Pathol 55:505–509

    Article  PubMed  CAS  Google Scholar 

  49. Powell CL, Bradford BU, Craig CP, Tsuchiya M, Uehara T, O'Connell TM, Pogribny IP, Melnyk S, Koop DR, Bleyle L, Threadgill DW, Rusyn I (2010) Mechanism for prevention of alcohol-induced liver injury by dietary methyl donors. Toxicol Sci 115(1):131–139

    Article  PubMed  CAS  Google Scholar 

  50. Naziroğlu M, Kutluhan S, Yilmaz M (2008) Selenium and topiramate modulates brain microsomal oxidative stress values, Ca2+-ATPase activity, and EEG records in pentylentetrazol-induced seizures in rats. J Membr Biol 225(1–3):39–49

    PubMed  Google Scholar 

  51. Demirci S, Kutluhan S, Nazıroğlu M, Uğuz AC, Yürekli VA (2013) Demirci K Effects of selenium and topiramate on cytosolic ca(2+) influx and oxidative stress in neuronal PC12 cells. Neurochem Res 38(1):90–97

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author extends his appreciation to the Deanship of Scientific Research at King Saud University for funding the study through the research group project no. RGPVPP139.

Conflict of Interest

The author declares that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gamaleldin I. Harisa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harisa, G.I. Oxidative Stress and Paraoxonase Activity in Experimental Selenosis: Effects of Betaine Administration. Biol Trace Elem Res 152, 258–266 (2013). https://doi.org/10.1007/s12011-013-9618-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-013-9618-7

Keywords

Navigation