Skip to main content
Log in

Iron Overload Inhibits Osteoblast Biological Activity Through Oxidative Stress

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Iron overload has recently been connected with bone mineral density in osteoporosis. However, to date, the effect of iron overload on osteoblasts remains poorly understood. The purpose of this study is to examine osteoblast biological activity under iron overload. The osteoblast cells (hFOB1.19) were cultured in a medium supplemented with different concentrations (50, 100, and 200 μM) of ferric ammonium citrate as a donor of ferric ion. Intracellular iron was measured with a confocal laser scanning microscope. Reactive oxygen species (ROS) were detected by 2,7-dichlorofluorescin diacetate fluorophotometry. Osteoblast biological activities were evaluated by measuring the activity of alkaline phosphatase (ALP) and mineralization function. Results indicated that iron overload could consequently increase intracellular iron concentration and intracellular ROS levels in a concentration-dependent manner. Additionally, ALP activity was suppressed, and a decline in the number of mineralized nodules was observed in in vitro cultured osteoblast cells. According to these results, it seems that iron overload probably inhibits osteoblast function through higher oxidative stress following increased intracellular iron concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

FAC:

Ferric ammonium citrate

CLSM:

Confocal laser scanning microscope

ROS:

Reactive oxygen species

ALP:

Alkaline phosphatase

References

  1. Ganz T (2009) Iron in innate immunity: starve the invaders. Curr Opin Immunol 21(1):63–67. doi:10.1016/j.coi.2009.01.011

    Article  PubMed  CAS  Google Scholar 

  2. MacKenzie EL, Iwasaki K, Tsuji Y (2008) Intracellular iron transport and storage: from molecular mechanisms to health implications. Antioxid Redox Signal 10(6):997–1030. doi:10.1089/ars.2007.1893

    Article  PubMed  CAS  Google Scholar 

  3. Li GF, Pan YZ, Sirois P, Li K, Xu YJ (2012) Iron homeostasis in osteoporosis and its clinical implications. Osteoporos Int J Established Result Coop Eur Found Osteoporos Natl Osteoporos Found USA. doi:10.1007/s00198-012-1982-1

  4. Weinberg ED (2006) Iron loading: a risk factor for osteoporosis. Biometals Int J Role Met Ions Biol Biochem Med 19(6):633–635. doi:10.1007/s10534-006-9000-8

    Article  CAS  Google Scholar 

  5. Guggenbuhl P, Fergelot P, Doyard M, Libouban H, Roth MP, Gallois Y, Chales G, Loreal O, Chappard D (2011) Bone status in a mouse model of genetic hemochromatosis. Osteoporos Int J Established Result Coop Eur Found Osteoporos Natl Osteoporos Found USA 22(8):2313–2319. doi:10.1007/s00198-010-1456-2

    Article  CAS  Google Scholar 

  6. Guggenbuhl P, Brissot P, Loreal O (2011) Haemochromatosis: the bone and the joint. Best Pract Res Clin Rheumatol 25(5):649–664. doi:10.1016/j.berh.2011.10.014

    Article  PubMed  Google Scholar 

  7. Sarrai M, Duroseau H, D'Augustine J, Moktan S, Bellevue R (2007) Bone mass density in adults with sickle cell disease. Br J Haematol 136(4):666–672. doi:10.1111/j.1365-2141.2006.06487.x

    Article  PubMed  CAS  Google Scholar 

  8. Sadat-Ali M, Sultan O, Al-Turki H, AlElq A (2011) Does high serum iron level induce low bone mass in sickle cell anemia ? Biometals Int J Role Met Ions Biol Biochem Med 24(1):19–22. doi:10.1007/s10534-010-9391-4

    Article  CAS  Google Scholar 

  9. Wibaux C, Legroux-Gerot I, Dharancy S, Boleslawski E, Declerck N, Canva V, Mathurin P, Pruvot FR, Cortet B (2011) Assessing bone status in patients awaiting liver transplantation. Joint Bone Spine 78(4):387–391. doi:10.1016/j.jbspin.2011.03.001

    Article  PubMed  Google Scholar 

  10. Loria I, Albanese C, Giusto M, Galtieri PA, Giannelli V, Lucidi C, Di Menna S, Pirazzi C, Corradini SG, Mennini G, Rossi M, Berloco P, Merli M (2010) Bone disorders in patients with chronic liver disease awaiting liver transplantation. Transplant Proc 42(4):1191–1193. doi:10.1016/j.transproceed.2010.03.096

    Article  PubMed  CAS  Google Scholar 

  11. Matsushima S, Hoshimoto M, Torii M, Ozaki K, Narama I (2001) Iron lactate-induced osteopenia in male Sprague–Dawley rats. Toxicol Pathol 29(6):623–629

    Article  PubMed  CAS  Google Scholar 

  12. Guggenbuhl P, Deugnier Y, Boisdet JF, Rolland Y, Perdriger A, Pawlotsky Y, Chales G (2005) Bone mineral density in men with genetic hemochromatosis and HFE gene mutation. Osteoporos Int J Established Result Coop Eur Found Osteoporos Natl Osteoporos Found USA 16(12):1809–1814. doi:10.1007/s00198-005-1934-0

    Article  CAS  Google Scholar 

  13. Mahachoklertwattana P, Sirikulchayanonta V, Chuansumrit A, Karnsombat P, Choubtum L, Sriphrapradang A, Domrongkitchaiporn S, Sirisriro R, Rajatanavin R (2003) Bone histomorphometry in children and adolescents with beta-thalassemia disease: iron-associated focal osteomalacia. J Clin Endocrinol Metab 88(8):3966–3972

    Article  PubMed  CAS  Google Scholar 

  14. Isomura H, Fujie K, Shibata K, Inoue N, Iizuka T, Takebe G, Takahashi K, Nishihira J, Izumi H, Sakamoto W (2004) Bone metabolism and oxidative stress in postmenopausal rats with iron overload. Toxicology 197(2):93–100. doi:10.1016/j.tox.2003.12.006

    Article  PubMed  CAS  Google Scholar 

  15. Jian J, Pelle E, Huang X (2009) Iron and menopause: does increased iron affect the health of postmenopausal women? Antioxid Redox Signal 11(12):2939–2943. doi:10.1089/ARS.2009.2576

    Article  PubMed  CAS  Google Scholar 

  16. Jia P, Xu YJ, Zhang ZL, Li K, Li B, Zhang W, Yang H (2012) Ferric ion could facilitate osteoclast differentiation and bone resorption through the production of reactive oxygen species. J Orthop Res 30(11):1843–1852. doi:10.1002/jor.22133

    Article  PubMed  CAS  Google Scholar 

  17. Christenson RH (1997) Biochemical markers of bone metabolism: an overview. Clin Biochem 30(8):573–593

    Article  PubMed  CAS  Google Scholar 

  18. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408(6809):239–247. doi:10.1038/35041687

    Article  PubMed  CAS  Google Scholar 

  19. Zarjou A, Jeney V, Arosio P, Poli M, Zavaczki E, Balla G, Balla J (2010) Ferritin ferroxidase activity: a potent inhibitor of osteogenesis. J Bone Miner Res Off J Am Soc Bone Miner Res 25(1):164–172. doi:10.1359/jbmr.091002

    Article  CAS  Google Scholar 

  20. Halliwell B, Gutteridge JM (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186:1–85

    Article  PubMed  CAS  Google Scholar 

  21. Fridovich I (1978) The biology of oxygen radicals. Science 201(4359):875–880

    Article  PubMed  CAS  Google Scholar 

  22. Hinoi E, Fujimori S, Wang L, Hojo H, Uno K, Yoneda Y (2006) Nrf2 negatively regulates osteoblast differentiation via interfering with Runx2-dependent transcriptional activation. J Biol Chem 281(26):18015–18024. doi:10.1074/jbc.M600603200

    Article  PubMed  CAS  Google Scholar 

  23. Bai XC, Lu D, Bai J, Zheng H, Ke ZY, Li XM, Luo SQ (2004) Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-kappaB. Biochem Biophys Res Commun 314(1):197–207

    Article  PubMed  CAS  Google Scholar 

  24. Almeida M, Han L, Martin-Millan M, O'Brien CA, Manolagas SC (2007) Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting beta-catenin from T cell factor- to forkhead box O-mediated transcription. J Biol Chem 282(37):27298–27305. doi:10.1074/jbc.M702811200

    Article  PubMed  CAS  Google Scholar 

  25. Tsay J, Yang Z, Ross FP, Cunningham-Rundles S, Lin H, Coleman R, Mayer-Kuckuk P, Doty SB, Grady RW, Giardina PJ, Boskey AL, Vogiatzi MG (2010) Bone loss caused by iron overload in a murine model: importance of oxidative stress. Blood 116(14):2582–2589. doi:10.1182/blood-2009-12-260083

    Article  PubMed  CAS  Google Scholar 

  26. Guggenbuhl P, Filmon R, Mabilleau G, Basle MF, Chappard D (2008) Iron inhibits hydroxyapatite crystal growth in vitro. Metab Clin Exp 57(7):903–910. doi:10.1016/j.metabol.2008.02.004

    Article  PubMed  CAS  Google Scholar 

  27. Yamasaki K, Hagiwara H (2009) Excess iron inhibits osteoblast metabolism. Toxicol Lett 191(2–3):211–215. doi:10.1016/j.toxlet.2009.08.023

    Article  PubMed  CAS  Google Scholar 

  28. Qu Z-H, Zhang X-L, Tang T-T, Dai K-R (2008) Promotion of osteogenesis through beta-catenin signaling by desferrioxamine. Biochem Bioph Res Co 370(2):332–337. doi:10.1016/j.bbrc.2008.03.092

    Article  CAS  Google Scholar 

  29. Messer JG, Kilbarger AK, Erikson KM, Kipp DE (2009) Iron overload alters iron-regulatory genes and proteins, down-regulates osteoblastic phenotype, and is associated with apoptosis in fetal rat calvaria cultures. Bone 45(5):972–979. doi:10.1016/j.bone.2009.07.073

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (no. 81273090), Jiangsu provincial grant (no. BK2012608), and science and technology projects of Suzhou (no. 510303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-Jia Xu.

Additional information

Yin-Feng He and Yong Ma contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, YF., Ma, Y., Gao, C. et al. Iron Overload Inhibits Osteoblast Biological Activity Through Oxidative Stress. Biol Trace Elem Res 152, 292–296 (2013). https://doi.org/10.1007/s12011-013-9605-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-013-9605-z

Keywords

Navigation