Skip to main content
Log in

Lanthanum (III) Regulates the Nitrogen Assimilation in Soybean Seedlings under Ultraviolet-B Radiation

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Ultraviolet-B (UV-B, 280–320 nm) radiation has seriously affected the growth of plants. Finding the technology/method to alleviate the damage of UV-B radiation has become a frontal topic in the field of environmental science. The pretreatment with rare earth elements (REEs) is an effective method, but the regulation mechanism of REEs is unknown. Here, the regulation effects of lanthanum (La(III)) on nitrogen assimilation in soybean seedlings (Glycine max L.) under ultraviolet-B radiation were investigated to elucidate the regulation mechanism of REEs on plants under UV-B radiation. UV-B radiation led to the inhibition in the activities of the key enzymes (nitrate reductase, glutamine synthetase, glutamate synthase) in the nitrogen assimilation, the decrease in the contents of nitrate and soluble proteins, as well as the increase in the content of amino acid in soybean seedlings. The change degree of UV-B radiation at the high level (0.45 W m−2) was higher than that of UV-B radiation at the low level (0.15 W m−2). The pretreatment with 20 mg L−1 La(III) could alleviate the effects of UV-B radiation on the activities of nitrate reductase, glutamine synthetase, glutamate synthase, and glutamate dehydrogenase, promoting amino acid conversion and protein synthesis in soybean seedlings. The regulation effect of La(III) under UV-B radiation at the low level was better than that of UV-B radiation at the high level. The results indicated that the pretreatment with 20 mg L−1 La(III) could alleviate the inhibition of UV-B radiation on nitrogen assimilation in soybean seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. UNE Programme (2002) Executive summary. Final of UNEP/WMO scientific assessment of ozone depletion: 2002. Prepared by the scientific assessment panel of the Montreal Protocol on Substances that Deplete the Ozone Layer. UNEP, Nairobi. (Released 23 August 2002).

  2. Programme UNE (2008) Environmental effects of ozone depletion and its interactions with climate change: progress report, 2007. Photochem Photobiol Sci 7:15–27

    Article  Google Scholar 

  3. Teramura AH (1990) Implications of stratospheric ozone depletion upon plant production. Hort Sci 25:1557–1560

    Google Scholar 

  4. Dahms HU, Dobretsov S, Lee JS (2011) Effects of UV radiation on marine ectotherms in polar regions. Comp Biochem Phys C 153:363–371

    Google Scholar 

  5. Singh J, Dubey AK, Singh RP (2011) Antarctic terrestrial ecosystem and role of pigments in enhanced UV-B radiations. Rev Environ Sci Biotechnol 10:63–77

    Article  Google Scholar 

  6. Salama HMH, Al Watban AA, Al-Fughom AT (2011) Effect of ultraviolet radiation on chlorophyll, carotenoid, protein and proline contents of some annual desert plants. Saudi J Biol Sci 18:79–86

    Article  CAS  Google Scholar 

  7. Peng Q, Zhou Q (2010) Effects of enhanced UV-B radiation on the distribution of mineral elements in soybean (Glycine max) seedlings. Chemosphere 78:859–863

    Article  PubMed  CAS  Google Scholar 

  8. Caldwell MM, Bornman JF, Ballaré CL, Flint SD, Kulandaivelu G (2007) Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. Photochem Photobiol Sci 6:252–266

    Article  PubMed  CAS  Google Scholar 

  9. Dai Q, Coronel VP, Vergara BS, Barnes PW, Quintos AT (1992) Ultraviolet-B radiation effects on growth and physiology of four rice cultivars. Crop Sci 32:1269–1274

    Article  Google Scholar 

  10. Wu J, Lou YS, Li YX, Cheng HY (2010) Effect of enhanced ultraviolet-B radiation on physiological and ecological parameters in barley. J Agro-Environ Sci 29:1033–1038

    CAS  Google Scholar 

  11. Farooq M, Shankar U, Ray RS, Misra RB, Agrawal N, Verma K, Hans RK (2005) Morphological and metabolic alterations in duckweed (Spirodela polyrhiza) on long-term low-level chronic UV-B exposure. Ecotoxicol Environ Saf 62:408–414

    Article  PubMed  CAS  Google Scholar 

  12. Agrawall SB, Rathore D, Singh A (2006) Combined effects of enhanced ultraviolet-B radiation and mineral nutrients on growth, biomass accumulation and yield characteristics of two cultivars of Vigna radiata L. J Environ Biol 27:55–60

    Google Scholar 

  13. Brosche M, Strid A (2003) Molecular events following perception of ultraviolet-B radiation by plants. Physiol Plant 117:1–10

    Article  CAS  Google Scholar 

  14. Jiang L, Wang Y, Björn LO, Li S (2011) UV-B-induced DNA damage mediates expression changes of cell cycle regulatory genes in Arabidopsis root tips. Planta 233:831–841

    Article  PubMed  CAS  Google Scholar 

  15. Ferreyra MLF, Pezza A, Biarc J, Burlingame AL, Casati P (2010) Plant L10 ribosomal proteins have different roles during development and translation under ultraviolet-B stress. Plant Physiol 153:1878–1894

    Article  CAS  Google Scholar 

  16. Brown BA, Jenkins GI (2008) UV-B signaling pathways with different fluence-rate response profiles are distinguished in mature Arabidopsis leaf tissue by requirement for UVR8, HY5, and HYH. Plant Physiol 146:576–588

    Article  PubMed  CAS  Google Scholar 

  17. Zu YG, Pang HH, Yu JH, Li DW, Wei XX, Gao YX, Tong L (2010) Responses in the morphology, physiology and biochemistry of Taxus chinensis var. mairei grown under supplementary UV-B radiation. J Photoch Photobio B 98:152–158

    Article  CAS  Google Scholar 

  18. Sarkar D, Bhowmik PC, Young-in-Kwon SK (2011) The role of proline-associated pentose phosphate pathway in cool-season turfgrasses after UV-B exposure. Environ Exp Bot 70:251–258

    Article  CAS  Google Scholar 

  19. Xue L, Li S, Xu S, An L, Wang X (2006) Alleviative effects of nitric oxide on the biological damage of spirulina platensis induced by enhanced ultraviolet-B. Acta microbiol Sin 46:561–564

    Google Scholar 

  20. Liu X, Chi H, Yue M, Zhang XF, Li WJ, Jia EP (2012) The regulation of exogenous jasmonic acid on UV-B stress tolerance in wheat. J Plant Growth Regul 31:436–447

    Article  CAS  Google Scholar 

  21. Liang CJ, Huang XH, Tao WY, Zhou Q (2006) Effect of rare earths on plants under supplementary ultraviolet-B radiation: II. Effect of cerium on antioxidant defense system in rape seedlings under supplementary ultraviolet-B radiation. J Rare Earth 24:364–368

    Article  Google Scholar 

  22. Liang CJ, Huang XH, Zhou Q (2006) Effect of cerium on photosynthetic characteristics of soybean seedling exposed to supplementary ultraviolet-B radiation. J Environ Sci 18:1147–1151 (in Chinese)

    Article  CAS  Google Scholar 

  23. Wang LH, Huang XH, Zhou Q (2009) Protective effect of rare earth against oxidative stress under ultraviolet-B radiation. Biol Trace Elem Res 128:82–93

    Article  PubMed  CAS  Google Scholar 

  24. Yan SR, Huang XH, Zhou Q (2007) Effect of lanthanum (III) on reactive oxigen metabolism of soybean seedlings under supplemental UV-B irradiation. J Rare Earth 25:352–358

    Article  Google Scholar 

  25. Wang Y, Zhou M, Gong X, Liu C, Hong M, Wang L, Hong F (2011) Influence of lanthanides on the antioxidative defense system in maize seedlings under cold stress. Biol Trace Elem Res 142:819–830

    Article  PubMed  CAS  Google Scholar 

  26. Ze Y, Yin S, Ji Z, Luo L, Liu C, Hong F (2009) Influences of magnesium deficiency and cerium on antioxidant system of spinach chloroplasts. Biometals 22:941–949

    Article  PubMed  CAS  Google Scholar 

  27. Liang B, Huang XH, Zhang GS, Zhang F, Zhou Q (2006) Effect of lanthanum on plants under supplementary ultraviolet-B radiation: effect of lanthanum on flavonoid contents in soybean seedlings exposed to supplementary ultraviolet-B radiation. J Rare Earth 24:613–616

    Article  Google Scholar 

  28. Peng Q, Zhou Q (2009) Antioxidant capacity of flavonoid in soybean seedlings under the joint actions of rare earth element La (III) and ultraviolet-B stress. Biol Trace Elem Res 127:69–80

    Article  PubMed  CAS  Google Scholar 

  29. Peng Q, Zhou Q (2009) The endogenous hormones in soybean seedlings under the joint actions of rare earth element La(III) and ultraviolet-B stress. Biol Trace Elem Res 132:270–277

    Article  PubMed  CAS  Google Scholar 

  30. Qu C, Gong X, Liu C, Hong M, Wang L, Hong F (2012) Effects of manganese deficiency and added cerium on photochemical efficiency of maize chloroplasts. Biol Trace Elem Res 146:94–100

    Article  PubMed  CAS  Google Scholar 

  31. Cao R, Huang XH, Zhou Q, Cheng XY (2007) Effects of lanthanum (III) on nitrogen metabolism of soybean seedlings under elevated UV-B radiation. J Environ Sci 19:1361–1366 (in Chinese)

    Article  CAS  Google Scholar 

  32. Liang CJ, Zhang GS, Zhou Q (2011) Effect of cerium on photosynthetic pigments and photochemical reaction activity in soybean seedling under ultraviolet-B radiation stress. Biol Trace Elem Res 142:796–806

    Article  PubMed  CAS  Google Scholar 

  33. Yuguan Z, Min Z, Luyang L, Zhe J, Chao L, Sitao Y, Yanmei D, Na L, Fashui H (2009) Effects of cerium on key enzymes of carbon assimilation of spinach under magnesium deficiency. Biol Trace Elem Res 131:154–164

    Article  PubMed  Google Scholar 

  34. Gong X, Hong M, Wang Y, Zhou M, Cai J, Liu C, Gong S, Hong F (2011) Cerium relieves the inhibition of photosynthesis of maize caused by manganese deficiency. Biol Trace Elem Res 141:305–316

    Article  PubMed  CAS  Google Scholar 

  35. Zhou M, Gong X, Wang Y, Liu C, Hong M, Wang L, Hong F (2011) Improvement of cerium of photosynthesis functions of maize under magnesium deficiency. Biol Trace Elem Res 142:760–772

    Article  PubMed  CAS  Google Scholar 

  36. Zhou M, Gong X, Ying W, Chao L, Hong M, Wang L, Fashui H (2011) Cerium relieves the inhibition of chlorophyll biosynthesis of maize caused by magnesium deficiency. Biol Trace Elem Res 143:468–477

    Article  PubMed  CAS  Google Scholar 

  37. Zhao H, Zhou Q, Zhou M, Li C, Gong X, Liu C, Qu C, Wang L, Si W, Hong F (2012) Magnesium deficiency results in damage of nitrogen and carbon cross-talk of maize and improvement by cerium addition. Biol Trace Elem Res 148:102–109

    Article  PubMed  CAS  Google Scholar 

  38. Peng Q, Zhou Q (2009) Influence of lanthanum on chloroplast ultrastructure of soybean leaves under ultraviolet-B stress. J Rare Earth 27:304–307

    Article  Google Scholar 

  39. Liu C, Hong F, Tao Y, Liu T, Xie Y, Xu J, Li Z (2011) The mechanism of the molecular interaction between cerium (III) and ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco). Biol Trace Elem Res 143:1110–1120

    Article  PubMed  CAS  Google Scholar 

  40. Crawford NM, Glass ADM (1998) Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci 3:389–395

    Article  Google Scholar 

  41. Yin S, Ze Y, Liu C, Li N, Zhou M, Duan Y, Hong F (2009) Cerium relieves the inhibition of nitrogen metabolism of spinach caused by magnesium deficiency. Biol Trace Elem Res 132:247–258

    Article  PubMed  CAS  Google Scholar 

  42. Gong X, Qu C, Liu C, Hong M, Wang L, Hong F (2011) Effects of manganese deficiency and added cerium on nitrogen metabolism of maize. Biol Trace Elem Res 144:1240–1250

    Article  PubMed  CAS  Google Scholar 

  43. Stitt M, Müller C, Matt P, Gibon Y, Carillo P, Morcuende R, Scheible WR, Krapp A (2002) Steps towards an integrated view of nitrogen metabolism. J Exp Bot 53:959–970

    Article  PubMed  CAS  Google Scholar 

  44. Noguchi A, Saito A, Homma Y, Nakao M, Sasaki N, Nishino T, Takahashi S, Nakayama T (2007) A UDP-glucose: isoflavone 7-O-glucosyltransferase from the roots of soybean (Glycine max) seedlings purification, gene cloning, phylogenetics, and an implication for an alternative strategy of enzyme catalysis. J Biol Chem 282:23581–23590

    Article  PubMed  CAS  Google Scholar 

  45. Schmutz J, Sb C, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  PubMed  CAS  Google Scholar 

  46. Choi IY, Hyten DL, Matukumalli LK, Song Q, Chaky JM, Quigley CV, Chase K, Lark KG, Reiter RS, Yoon MS, Hwang EY (2007) A soybean transcript map: gene distribution, haplotype and single-nucleotide polymorphism analysis. Genetics 176:685–696

    Article  PubMed  CAS  Google Scholar 

  47. Pan RZ, Dong Y (2001) Plant physiology, 2nd edn. High Education Press, Beijing

    Google Scholar 

  48. Ida S, Mori E, Morita Y (1974) Purification, stabilization and characterization of nitrite reductase from barley roots. Planta 121:213–224

    Article  CAS  Google Scholar 

  49. Scholl RL, Harper JE, Hageman RH (1974) Improvements of the nitrite color development in assays of nitrate reductase by phenazine methosulfate and zinc acetate. Plant Physiol 53:825–828

    Article  PubMed  CAS  Google Scholar 

  50. Aslam M, Huffaker RC (1989) Role of nitrate and nitrite in the induction of nitrite reductase in leaves of barley seedlings. Plant Physiol 91:1152–1156

    Article  PubMed  CAS  Google Scholar 

  51. Agbaria H, Heuer B, Zieslin N (1998) Rootstock-imposed alterations in nitrate reductase and glutamine synthetase activities in leaves of rose plants. Biol Plant 41:85–91

    Article  CAS  Google Scholar 

  52. Groat RG, Vance CP (1981) Root nodule enzymes of ammonia assimilation in alfalfa (Medicago sativa L.): developmental patterns and response to applied nitrogen. Plant Physiol 67:1198–1203

    Article  PubMed  CAS  Google Scholar 

  53. Beda N, Nedospasov A (2005) A spectrophotometric assay for nitrate in an excess of nitrite. Nitric Oxide-Biol Ch 13:93–97

    Article  CAS  Google Scholar 

  54. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  55. Ke L, Wong TWY, Wong AHY, Wong YS, Tam NFY (2003) Negative effects of humic acid addition on phytoremediation of pyrene-contaminated sediments by mangrove seedlings. Chemosphere 52:1581–1591

    Article  PubMed  CAS  Google Scholar 

  56. Campbell WH (1999) Nitrate reductase structure, function and regulation: bridging the gap between biochemistry and physiology. Annu Rev Plant Biol 50:277–303

    Article  CAS  Google Scholar 

  57. Mo LY, Wu LH, Tao QN (2001) Research advances on GS/GOGAT cycle in higher plants. Plant Nutr Fert Sci 7:223–231

    Google Scholar 

  58. Lam HM, Coschigano KT, Oliveira IC, Melo-Oliveira R, Coruzzi GM (1996) The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Plant Biol 47:569–593

    CAS  Google Scholar 

  59. Freedman RB, Radda GK (1969) Chemical modification of glutamate dehydrogenase by 2, 4, 6-trinitrobenzenesulphonic acid. Biochem J 114:611–619

    PubMed  CAS  Google Scholar 

  60. Miflin BJ, Habash DZ (2002) The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J Exp Bot 53:979–987

    Article  PubMed  CAS  Google Scholar 

  61. Su SQ, Zhou YM, Qin JG, Wang W, Yao WZ, Song L (2012) Physiological responses of Egeria densa to high ammonium concentration and nitrogen deficiency. Chemosphere 86:538–545

    Article  Google Scholar 

  62. Less H, Galili G (2008) Principal transcriptional programs regulating plant amino acid metabolism in response to abiotic stresses. Plant Physiol 147:316–330

    Article  PubMed  CAS  Google Scholar 

  63. Tang LN, Lin WX, Liang YY, Chen FY (2004) Effects of enhanced ultraviolet-B radiation on soluble protein and nucleic acid in rice leaves. J Eco-Agri 12:39–42 (in Chinese)

    Google Scholar 

  64. Larios B, Agüera E, De La Haba P, Pérez-Vicente R, Maldonado JM (2001) A short-term exposure of cucumber plants to rising atmospheric CO2 increases leaf carbohydrate content and enhances nitrate reductase expression and activity. Planta 212:305–312

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Fundamental Research Funds for the Central Universities (no. JUDCF11013), the Foundation of State Planning Committee (no. GJX01100626), the National Natural Science Foundation of China (no. 20971069, no. 31170477), the Foundation of Project of Education and Teaching Reform in Higher Education of Jiangsu Province (no. 3-26-77).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, G., Wang, L. & Zhou, Q. Lanthanum (III) Regulates the Nitrogen Assimilation in Soybean Seedlings under Ultraviolet-B Radiation. Biol Trace Elem Res 151, 105–112 (2013). https://doi.org/10.1007/s12011-012-9528-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-012-9528-0

Keywords

Navigation