Skip to main content
Log in

Non-heme Iron as Ferrous Sulfate Does Not Interact with Heme Iron Absorption in Humans

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The absorption of heme iron has been described as distinctly different from that of non-heme iron. Moreover, whether heme and non-heme iron compete for absorption has not been well established. Our objective was to investigate the potential competition between heme and non-heme iron as ferrous sulfate for absorption, when both iron forms are ingested on an empty stomach. Twenty-six healthy nonpregnant women were selected to participate in two iron absorption studies using iron radioactive tracers. We obtained the dose–response curve for absorption of 0.5, 10, 20, and 50 mg heme iron doses, as concentrated red blood cells. Then, we evaluated the absorption of the same doses, but additionally we added non-heme iron, as ferrous sulfate, at constant heme/non-heme iron molar ratio (1:1). Finally, we compare the two curves by a two-way ANOVA. Iron sources were administered on an empty stomach. One factor analysis showed that heme iron absorption was diminished just by increasing total heme iron (P < 0.0001). The addition of non-heme iron as ferrous sulfate did not have any effect on heme iron absorption (P = NS). We reported evidence that heme and non-heme iron as ferrous sulfate does not compete for absorption. The mechanism behind the absorption of these iron sources is not clear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

DMT1:

Divalent metal transporter

IREG1:

Ferroportin

FEP:

Free erythrocyte protoporphyrin

HCP1:

Heme carrier protein 1

Hb:

Hemoglobin

INTA:

Institute of Nutrition and Food Technology

MCV:

Mean corpuscular volume

CRBC:

Red blood cells

SD:

Standard deviation

SF:

Serum ferritin

Sat:

Transferrin saturation

References

  1. WHO (2008) Worldwide prevalence of anaemia. WHO Web. http://whqlibdoc.who.int/publications/2008/9789241596657_eng.pdf. Accessed 26 Jun 2012

  2. Theil EC, Chen H, Miranda C, Janser H, Elsenhans B, Núñez MT, Pizarro F, Schümann K (2012) Absorption of iron from ferritin is independent of heme iron and ferrous salts in women and rat intestinal segments. J Nutr 142(3):478–483

    Article  PubMed  CAS  Google Scholar 

  3. Davila-Hicks P, Theil EC, Lönnerdal B (2004) Iron in ferritin or in salts (ferrous sulfate) is equally bioavailable in nonanemic women1–3. Am J Clin Nutr 80:936–940

    PubMed  CAS  Google Scholar 

  4. WHO (2011) Iron deficiency anaemia assessment, prevention, and control. A guide for programme managers. WHO Web. http://whqlibdoc.who.int/hq/2001/WHO_NHD_01.3.pdf. Accessed 28 Jan 2012

  5. Gonzalez-Rosendo G, Polo J, Rodriguez-Jerez JJ, Puga-Diaz R, Reyes-Navarrete EG, Quintero-Gutierrez AG (2010) Bioavailability of a heme-iron concentrate product added to chocolate biscuit filling in adolescent girls living in a rural area of Mexico. J Food Sci 75:H73–H78

    Article  PubMed  CAS  Google Scholar 

  6. Walter T, Hertrampf E, Pizarro F, Olivares M, Llaguno S, Letelier A, Vega V, Stekel A (1993) Effect of bovine-hemoglobin-fortified cookies on iron status of schoolchildren: a nationwide program in Chile. Am J Clin Nutr 57:190–194

    PubMed  CAS  Google Scholar 

  7. Asenjo J, Amar M, Cartagena N, King J, Hiche E, Stekel A (1985) Use of a bovine heme iron concentrate in the fortification of biscuits. J Food Sci 50:795–799

    Article  CAS  Google Scholar 

  8. Layrisse M, Martinez-Torres C, Cook JD, Walker R, Finch CA (1973) Iron fortification of food: its measurement by the extrinsic tag method. Blood 41:333–352

    PubMed  CAS  Google Scholar 

  9. Lynch SR, Dassenko SA, Morck TA, Beard JL, Cook JD (1985) Soy protein products and heme iron absorption in humans. Am J Clin Nutr 41:13–20

    PubMed  CAS  Google Scholar 

  10. Cook JD, Morck TA, Lynch SR (1981) The inhibitory effect of soy products on nonheme iron absorption in man. Am J Clin Nutr 34:2622–2629

    PubMed  CAS  Google Scholar 

  11. Hurrell RF, Juillerat MA, Reddy MB, Lynch SR, Dassenko SA, Cook JD (1992) Soy protein, phytate, and iron absorption in humans. Am J Clin Nutr 56:573–578

    PubMed  CAS  Google Scholar 

  12. Cook JD (1990) Adaptation in iron metabolism. Am J Clin Nutr 51:301–308

    PubMed  CAS  Google Scholar 

  13. Roughead ZK, Hunt JR (2000) Adaptation in iron absorption: iron supplementation reduces nonheme-iron but not heme-iron absorption from food. Am J Clin Nutr 72:982–989

    PubMed  CAS  Google Scholar 

  14. Hunt JR, Roughead ZK (2000) Adaptation of iron absorption in men consuming diets with high or low iron bioavailability. Am J Clin Nutr 71:94–102

    PubMed  CAS  Google Scholar 

  15. Conrad ME, Umbreit JN, Moore EG, Hainsworth LN, Porubcin M, Simovich MJ, Nakada MT, Dolan K, Garrick MD (2000) Separate pathways for cellular uptake of ferric and ferrous iron. Am J Physiol Gastrointest Liver Physiol 279:G767–G774

    PubMed  CAS  Google Scholar 

  16. Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482–488

    Article  PubMed  CAS  Google Scholar 

  17. Girvan HM, Marshall KR, Lawson RJ, Leys D, Joyce MG, Clarkson J, Smith WE, Cheesman MR, Munro AW (2004) Flavocytochrome P450 BM3 mutant A264E undergoes substrate-dependent formation of a novel heme iron ligand set. J Biol Chem 279:23274–23286

    Article  PubMed  CAS  Google Scholar 

  18. Rouault TA (2005) The intestinal heme transporter revealed. Cell 122:649–651

    Article  PubMed  CAS  Google Scholar 

  19. McKie AT, Marciani P, Rolfs A, Brennan K, Wehr K, Barrow D, Miret S, Bomford A, Peters TJ, Farzaneh F, Hediger MA, Hentze MW, Simpson RJ (2000) A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell 5:299–309

    Article  PubMed  CAS  Google Scholar 

  20. Turnbull A, Cleton F, Finch CA (1962) Iron absorption. IV. The absorption of hemoglobin iron. J Clin Invest 41:1897–1907

    Article  PubMed  CAS  Google Scholar 

  21. CDC and WHO (2004) Assessing the iron status of populations. http://www.who.int/nutrition/publications/micronutrients/anaemia_iron_deficiency/9789241596107.pdf. Accessed 26 Jun 2012

  22. Eakins JD, Brown DA (1966) An improved method for the simultaneous determination of iron-55 and iron-59 in blood by liquid scintillation counting. Int J Appl Radiat Isot 17:391–397

    Article  PubMed  CAS  Google Scholar 

  23. Nadler S, Hidalgo I, Block T (1962) The Tulane table of blood volume in normal man. Surgeron 51:224–232

    Google Scholar 

  24. Bothwell TH, Charlton RW, Cook JD, Finch CA (1979) Iron metabolism in man. Blackwell Scientific, Oxford

    Google Scholar 

  25. Callender ST, Mallett BJ, Smith MD (1957) Absorption of haemoglobin iron. Br J Haematol 3:186–192

    Article  PubMed  CAS  Google Scholar 

  26. Fleming RE, Bacon BR (2005) Orchestration of iron homeostasis. N Engl J Med 352:1741–1744

    Article  PubMed  CAS  Google Scholar 

  27. Yanatori I, Tabuchi M, Kawai Y, Yasui Y, Akagi R, Kishi F (2010) Heme and non-heme iron transporters in non-polarized and polarized cells. BMC Cell Biol 11:39

    Article  PubMed  Google Scholar 

  28. Young MF, Glahn RP, Ariza-Nieto M, Inglis J, Olbina G, Westerman M, O’Brien KO (2009) Serum hepcidin is significantly associated with iron absorption from food and supplemental sources in healthy young women. Am J Clin Nutr 89:533–538

    Article  PubMed  CAS  Google Scholar 

  29. Nemeth E, Roetto A, Garozzo G, Ganz T, Camaschella C (2005) Hepcidin is decreased in TFR2 hemochromatosis. Blood 105:1803–1806

    Article  PubMed  CAS  Google Scholar 

  30. Rapisarda C, Puppi J, Hughes RD, Dhawan A, Farnaud S, Evans RW, Sharp PA (2010) Transferrin receptor 2 is crucial for iron sensing in human hepatocytes. Am J Physiol Gastrointest Liver Physiol 299:G778–G783

    Article  PubMed  CAS  Google Scholar 

  31. Nemeth E, Valore EV, Territo M, Schiller G, Lichtenstein A, Ganz T (2003) Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood 101:2461–2463

    Article  PubMed  CAS  Google Scholar 

  32. International Nutritional Anemia Consultative Group (1998) Guidelines for the use of iron supplements to prevent and treat iron deficiency anemia. WHO Web. http://www.who.int/nutrition/publications/micronutrients/guidelines_for_Iron_supplementation.pdf. Accessed 7 May 2012

  33. Zimmermann MB, Chassard C, Rohner F, N’Goran EK, Nindjin C, Dostal A, Utzinger J, Ghattas H, Lacroix C, Hurrell RF (2010) The effects of iron fortification on the gut microbiota in African children: a randomized controlled trial in Cote d’Ivoire. Am J Clin Nutr 92:1406–1415

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by grant 1061060 from Fondo Nacional de Ciencia y Tecnología (FONDECYT) Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Gaitán.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaitán, D., Olivares, M., Lönnerdal, B. et al. Non-heme Iron as Ferrous Sulfate Does Not Interact with Heme Iron Absorption in Humans. Biol Trace Elem Res 150, 68–73 (2012). https://doi.org/10.1007/s12011-012-9496-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-012-9496-4

Keywords

Navigation