Skip to main content

Advertisement

Log in

Different Binding Affinities of Pb2+ and Cu2+ to Glycosylation Variants of Human Serum Transferrin Interfere with the Detection of Carbohydrate-Deficient Transferrin

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Carbohydrate-deficient transferrin (CDT) is a specific biomarker of alcohol abuse, and for diagnosis of chronic alcohol, abuse is often determined using isoelectric focusing (IEF) and chromatographic techniques. To allow this method to be used for the diagnosis of alcohol abuse, inferences of various physical and chemical factors with the detection of CDT have been investigated. However, few reports have focused thus far on whether different metal ions have different binding affinities to CDT and HTf variants or further interfere in the detection of CDT. Here, in order to figure out whether and how metal ions such as Pb2+ and Cu2+ bind to holo-human serum transferrin (holo-HTf) and further interfere in CDT detection, the binding characteristics and the binding parameters of holo-HTf with metal ions such as Pb2+ and Cu2+ were investigated using UV–visible spectroscopy, Fluorescence spectroscopy, and ICP–MS. Moreover, whether the metal ions such as Pb2+ and Cu2+ will reduce the diagnostic accuracy of CDT in clinic was investigated using IEF. The present study demonstrates that Pb2+ and Cu2+ have different binding affinities to holo-HTf variants and produce different changes in the relative amounts of each glycosylation isoforms of HTf. Accordingly, the glycosylation chains of HTf will affect the binding affinities of glycosylation isoforms with Pb2+ and Cu2+, causing further interferences in CDT detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aisen P, Enns C, Wessling-Resnick M (2001) Chemistry and biology of eukaryotic iron metabolism. Int J Biochem Cell Biol 33:940–959

    Article  PubMed  CAS  Google Scholar 

  2. Lum FJB, McGill JR, Moore CM, Naylor SL, van Bragt PH, Baldwin WD, Bowman BH (1984) Human transferrin: cDNA characterization and chromosomal localization. PNAS 81:2752–2756

    Article  PubMed  Google Scholar 

  3. Busto MEDC, Montes-Bayón M, Blanco-González E, Meija J, Sanz-Medel A (2005) Strategies to study human serum transferrin isoforms using integrated liquid chromatography ICP MS, MALDI-TOF, and ESI-Q-TOF detection: application to chronic alcohol abuse. Anal Chem 77:5615–5621

    Article  Google Scholar 

  4. Baker HM, Anderson BF, Baker EN (2003) Dealing with iron: common structural principles in proteins that transport iron and heme. PANS 100:3579–3583

    Article  CAS  Google Scholar 

  5. Lambert LA, Perri H, Meehan TJ (2005) Evolution of duplications in the transferrin family of proteins. Comp Biochem Physiol B 140:11–25

    Article  PubMed  Google Scholar 

  6. Wally J, Halbrooks PJ, Vonrhein C, Rould MA, Everse SJ, Mason AB (2006) The crystal structure of iron-free human serum transferrin provides insight into inter-lobe communication and receptor binding. J Bio Chem 281:24934–24944

    Article  CAS  Google Scholar 

  7. Aramini JM, Saponja JA, Vogel HL (1996) Spectroscopic studies of the interaction of aluminum(III) with transferrins. Coord Chem Rev 149:193–229

    CAS  Google Scholar 

  8. Peter K, Thomas K, Silke D, Diana B, Nils B, Beat S, Edgar H, Jaak J, Claus HW, Heinz T (2003) Mass spectrometric analysis of human transferrin in different body fluids. Clin Chem Lab Med 41:1580–1588

    Google Scholar 

  9. Biffi S, Tamaro G, Bortot B, Zamberlan S, Severini GM, Carrozzi M (2007) Carbohydrate-deficient transferrin (CDT) as a biochemical tool for the screening of congenital disorders of glycosylation (CDGs). Clin Biochem 40:1431–1434

    Article  PubMed  CAS  Google Scholar 

  10. Arndt T, Guessregen B, Hallermann D, Nauck M, Terjung D, Weckesser H (2008) Forensic analysis of carbohydrate- deficient transferrin (CDT) by HPLC—Statistics and extreme CDT values. Forensic Sci Int 175:27–30

    Article  PubMed  CAS  Google Scholar 

  11. Bergström JP, Helander A (2008) Influence of alcohol use, ethnicity, age, gender, BMI and smoking on the serum transferrin glycoform pattern: implications for use of carbohydrate-deficient transferrin (CDT) as alcohol biomarker. Clin Chim Acta 388:59–67

    Article  PubMed  Google Scholar 

  12. Sanna D, Garribba E, Micera G (2009) Interaction of VO2+ ion with human serum transferrin and albumin. J Inorg Biochem 103:648–655

    Article  PubMed  CAS  Google Scholar 

  13. Harris WR, Messori L (2002) A comparative study of aluminum(III), gallium(III), indium(III), and thallium(III) binding to human serum transferrin. Coord Chem Rev 228:237–262

    Article  CAS  Google Scholar 

  14. Hémadi M, Kahn PH, Miquel G, Chahine JMEH (2004) Transferrin’s mechanism of interaction with receptor 1. Biochem 43:1736–1745

    Article  Google Scholar 

  15. Zhang MX, Gumerov DR, Kaltashov IA, Mason AB (2004) Indirect detection of protein-metal binding: interaction of serum transferrin with In3+ and Bi3+. J Am Soc Mass Spectrom 15:1658–1664

    Article  PubMed  CAS  Google Scholar 

  16. Li H, Sun H, Qian ZM (2002) The role of the transferrin-transferrin-receptor system in drug delivery and targeting. Trends Pharmacol Sci 23:206–209

    Article  PubMed  CAS  Google Scholar 

  17. Qian ZM, Li HY, Sun HZ, Ho K (2002) Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev 54:561–587

    Article  PubMed  CAS  Google Scholar 

  18. Lee KM, Kim IS, Lee YB, Shin SC, Lee KC, Oh IJ (2005) Evaluation of transferrin-polyethylenimine conjugate for targeted gene delivery. Arch Pharm Res 28:722–729

    Article  PubMed  CAS  Google Scholar 

  19. Hoshino T, Misaki M, Yamamoto M, Shimizu H, Ogawa Y, Toguchi H (1995) Receptor-binding, in vitro cytotoxicity, and in vivo distribution of transferrin-bound cis-platinum (II) of differing molar ratios. J Controlled Release 37:75–81

    Article  CAS  Google Scholar 

  20. Chikh Z, Hémadi M, Miquel G, Ha-Duong NT, Chahine JMEH (2008) Cobalt and the iron acquisition pathway: competition towards interaction with receptor1. J Mol Biol 380:900–916

    Article  PubMed  CAS  Google Scholar 

  21. Kim HS, Kim MK, Lee BK, He MSO (2009) Oral supplementation with NaFeEDTA reduces blood lead in postmenopausal but not premenopausal Korean women with anemia. Nutrition 25:66–71

    Article  PubMed  CAS  Google Scholar 

  22. Carginale V, Capasso C, Scudiero R, Parisi E (2002) Identification of cadmium-sensitive genes in the Antarctic fish Chionodraco hamatus by messenger RNA differential display. Gene 299:117–124

    Article  PubMed  CAS  Google Scholar 

  23. Wang Q, Luo WJ, Zheng W, Liu YP, Xu H, Zheng G, Dai ZM, Zhang WB, Chen YM, Chen JY (2007) Iron supplement prevents lead-induced disruption of the blood-brain barrier during rat development. Toxicol Appl Pharmacol 219:33–41

    Article  PubMed  CAS  Google Scholar 

  24. Farrar G, Altmann P, Hodgkins P, Blair JA (1992) Gallium (aluminium) transferrin binding in Alzheimer’s disease. Lancet 339:302–303

    Article  PubMed  CAS  Google Scholar 

  25. Kim Y, Olivi L, Cheong JH, Maertens A, Bressler JP (2007) Aluminum stimulates uptake of non-transferrin bound iron and transferrin bound iron in human glial cells. Toxicol Appl Pharmacol 220:349–356

    Article  PubMed  CAS  Google Scholar 

  26. Nagaoka MH, Maitani T (2005) Binding affinity of aluminium to human serum transferrin and effects of carbohydrate chain modification as studied by HPLC/high-resolution ICP–MS–speciation of aluminium in human serum. J Inorg Biochem 99:1887–1894

    Article  PubMed  CAS  Google Scholar 

  27. Martello S, Trettene M, Cittadini F, Bortolotti F, Giorgio FD, Chiarotti M, Tagliaro F (2004) Determination of carbohydrate deficient transferrin (CDT) with capillary electrophoresis: An inter laboratory comparison. Forensic Sci Int 141:153–157

    Article  PubMed  CAS  Google Scholar 

  28. van Gelder W, Huijskes-Heins MIE, Hukshorn CJ, de Jeu-Jaspars CMM, van Noort WL, van Eijk HG (1995) Isolation, purification and characterization of porcine serum transferrin and hemopexin. Comp Biochem Physiol 111B:171–179

    Google Scholar 

  29. Luo LZ, Jin HW, Cai ZW, Huang HQ (2011) Functions of double subunits of a type, structure of iron core, and kinetics of iron release from membrane ferritin of human placenta. Chinese J Anal Chem 39:155–162

    Article  CAS  Google Scholar 

  30. Luo LZ, Jin HW, Huang HQ (2011) Application of capillary isoelectric focusing and peptide mass fingerprinting in carbohydrate-deficient transferring detection. Rapid Commun Mass Spectrum 25:1391–1398

    Article  CAS  Google Scholar 

  31. Lakowicz JR (2006) Principles of fluorescence spectroscopy (3rd edn). Springer, New York, p 278

    Book  Google Scholar 

  32. Harris WR, Brook CE, Spilling CD, Elleppan S, Peng W, Xin M, Wyk JV (2004) Release of iron from transferrin by phosphonocarboxylate and diphosphonate chelating agents. J Inorg Biochem 98:1824–1836

    Article  PubMed  CAS  Google Scholar 

  33. Lakowicz JR, Weber G (1973) Quenching of protein fluorescence by oxygen. Detection of structural fluctuations in proteins on the nanosecond time scale. Biochemistry 21:4171–4179

    Article  Google Scholar 

  34. Yang L (2009) Accurate and precise determination of isotopic ratios by MC-ICP–MS: a review. Mass Spectrome Rev 28:990–1011

    Article  CAS  Google Scholar 

  35. Quarles CD Jr, Brumaghim JL, Marcus RK (2010) Simultaneous multiple element detection by particle beam/hollow cathode-optical emission spectroscopy as a tool for metallomic studies: determinations of metal binding with apo-transferrin. Metallomics 2:154–161

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by grants from the State Natural Science Fund (No.30870515), 973 Projects (No. 2010CB126403), and the PCSIRT Project (IRT0941), China. We thank Professor John Hodgkiss for assistance with the English in the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He-Qing Huang.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Supporting Figure 1

Native-PAGE of holo-HTf-metal ions using silver staining Holo-HTf-metal ions were analyzed on a 7.0% native PAGE with a 3.0% stacked gel combined with silver stain. a: Holo-HTf; b: Holo-HTf-Cu2+; and c: Holo-HTf-Pb2+ (DOC 259 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, LZ., Jin, HW., Huang, L. et al. Different Binding Affinities of Pb2+ and Cu2+ to Glycosylation Variants of Human Serum Transferrin Interfere with the Detection of Carbohydrate-Deficient Transferrin. Biol Trace Elem Res 144, 487–495 (2011). https://doi.org/10.1007/s12011-011-9150-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-011-9150-6

Keywords

Navigation