Skip to main content
Log in

Fluorescent adduct formation with terbium: a novel strategy for transferrin glycoform identification in human body fluids and carbohydrate-deficient transferrin HPLC method validation

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This paper puts forward a new method for the transferrin (Tf) glycoform analysis in body fluids that involves the formation of a transferrin-terbium fluorescent adduct (TfFluo). The key idea is to validate the analytical procedure for carbohydrate-deficient transferrin (CDT), a traditional biochemical serum marker to identify chronic alcohol abuse. Terbium added to a human body-fluid sample produced TfFluo. Anion exchange HPLC technique, with fluorescence detection (λ exc 298 nm and λ em 550 nm), permitted clear separation and identification of Tf glycoform peaks without any interfering signals, allowing selective Tf sialoforms analysis in human serum and body fluids (cadaveric blood, cerebrospinal fluid, and dried blood spots) hampered for routine test. Serum samples (n = 78) were analyzed by both traditional absorbance (Abs) and fluorescence (Fl) HPLC methods and CDT% levels demonstrated a significant correlation (p < 0.001 Pearson). Intra- and inter-runs CV% was 3.1 and 4.6%, respectively. The cut-off of 1.9 CDT%, related to the HPLC Abs proposed as the reference method, by interpolation in the correlation curve with the present method demonstrated a 1.3 CDT% cut-off. Method comparison by Passing-Bablok and Bland-Altman tests demonstrated Fl versus Abs agreement. In conclusion, the novel method is a reliable test for CDT% analysis and provides a substantial analytical improvement offering important advantages in terms of types of body fluid analysis. Its sensitivity and absence of interferences extend clinical applications being reliable for CDT assay on body fluids usually not suitable for routine test.

The formation of a transferrin-terbium fluorescent adduct can be used to analyze the transferrin glycoforms. The HPLC method for carbohydrate-deficient transferrin (CDT%) measurement was validated and employed to determine the levels in different body fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hirose M. The structural mechanism for iron uptake and release by transferrin. Biosci Biotechnol Biochem. 2000;64:1328–36.

    Article  CAS  Google Scholar 

  2. Kumar R, Mauk AG. Protonation and anion binding control the kinetics of iron release from human transferrin. J Phys Chem B. 2012;116:3795–807.

    Article  CAS  Google Scholar 

  3. Landberg E, Åström E, Kågedal B, Påhlsson P. Disialo–trisialo bridging of transferrin is due to increased branching and fucosylation of the carbohydrate moiety. Clin Chim Acta. 2012;414:58–64.

    Article  CAS  Google Scholar 

  4. Prinsen BH, de Sain-van der Velden MG, Kaysen GA, Straver HW, van Rijn HJ, Stellaard F, et al. Transferrin synthesis is increased in nephrotic patients insufficiently to replace urinary losses. J Am Soc Nephrol. 2001;12:1017–25.

    CAS  Google Scholar 

  5. Rainio J, Ahola S, Kangastupa P, Kultti J, Tuomi H, Karhunen PJ, et al. Comparison of ethyl glucuronide and carbohydrate-deficient transferrin in different body fluids for post-mortem identification of alcohol use. Alcohol Alcohol. 2014;49:55–9.

    Article  CAS  Google Scholar 

  6. Brown KJ, Vanderver A, Hoffman EP, Schiffmann R, Hathout Y. Characterization of transferrin glycopeptide structures in human cerebrospinal fluid. Int J Mass Spectrom. 2012;312:97–106.

    Article  CAS  Google Scholar 

  7. Kratz EM, Waszkiewicz N, Kałuza A, Szajda SD, Zalewska-Szajda B, AgataSzulc A, et al. Glycosylation changes in the salivary glycoproteins of alcohol-dependent patients: a pilot study. Alcohol Alcohol. 2014;49:23–30.

    Article  CAS  Google Scholar 

  8. Pérez–Cerdá C, Quelhas D, Vega AI, Ecay J, Vilarinho L, Ugarte M. Screening using serum percentage of carbohydrate-deficient transferrin for congenital disorders of glycosylation in children with suspected metabolic disease. Clin Chem. 2008;54:93–100.

    Article  Google Scholar 

  9. Guillard M, Wada Y, Hansikova H, Yuasa I, Vesela K, Ondruskova N, et al. Transferrin mutations at the glycosylation site complicate diagnosis of congenital disorders of glycosylation type I. J Inherit Metab Dis. 2011;34:901–6.

    Article  CAS  Google Scholar 

  10. Park JH, Zühlsdorf A, Wada Y, Roll C, Rust S, Du Chesne I, et al. The novel transferrin E592A variant impairs the diagnostics of congenital disorders of glycosylation. Clin Chim Acta. 2014;436:135–9.

    Article  CAS  Google Scholar 

  11. Shirotani K, Futakawa S, Nara K, Hoshi K, Saito T, Tohyama Y, et al. High throughput ELISAs to measure a unique glycan on transferrin in cerebrospinal fluid: a possible extension toward Alzheimer’s disease biomarker development. Int J Alzheimers Dis. 2011;2011:1–5.

    Article  Google Scholar 

  12. Bakhireva LN, Cano S, Rayburn WF, Savich RD, Leeman L, Anton RF, et al. Advanced gestational age increases serum carbohydrate-deficient transferrin levels in abstinent pregnant women. Alcohol Alcohol. 2012;47:683–7.

    Article  CAS  Google Scholar 

  13. Arndt T, van der Meijden BB, Wielders JPM. Atypical serum transferrin isoform distribution in liver cirrhosis studied by HPLC, capillary electrophoresis and transferrin genotyping. Clin Chim Acta. 2008;394:42–6.

    Article  CAS  Google Scholar 

  14. Bergström JP, Helander A. Influence of alcohol use, ethnicity, age, gender, BMI and smoking on the serum transferrin glycoform pattern: implications for use of carbohydrate-deficient transferrin (CDT) as alcohol biomarker. Clin Chim Acta. 2008;388:59–67.

    Article  Google Scholar 

  15. Kwon SJ, Zhang F, Dordick JS, Sonstein WJ, Linhardt RJ. Detection of cerebrospinal fluid leakage by specific measurement of transferrin glycoforms. Electrophoresis. 2015;36:2425–32.

    Article  CAS  Google Scholar 

  16. Khalil M, Riedlbauer B, Langkammer C, Enzinger C, Ropele S, Stojakovic T, et al. Cerebrospinal fluid transferrin levels are reduced in patients with early multiple sclerosis. Mult Scler. 2014;20:1569–77.

    Article  CAS  Google Scholar 

  17. Dastych M, Gottwaldova J, Pohludka M, Prikry P, Benovska M, Scand J. Determination of asialotransferrin in the cerebrospinal fluid with the HPLC method. Clin Lab Invest. 2010;70:87–91.

    Article  CAS  Google Scholar 

  18. Chen Y, Samsoondar J, Yang L. Where has all the β1-transferrin gone? Clin Chem. 2014;60:794–5.

    Article  CAS  Google Scholar 

  19. Stibler H, Kjellin KG. Isoelectric focusing and electrophoresis of the CSF proteins in tremor of different origins. J Neurol Sci. 1976;30(2–3):269–85.

    Article  CAS  Google Scholar 

  20. Stibler H, Sydow O, Borg S. Quantitative estimation of abnormal microheterogeneity of serum transferrin in alcoholics. Pharmacol Biochem Behav. 1980;13 Suppl 1:47–51.

    Article  Google Scholar 

  21. Stibler H, Borg S, Joustra M. Micro anion exchange chromatography of carbohydrate-deficient transferrin in serum in relation to alcohol consumption (Swedish Patent 8400587-5). Alcohol Clin Exp Res. 1986;10(5):535–44.

    Article  CAS  Google Scholar 

  22. Nanau RM, Neuman MG. Biomolecules and biomarkers used in diagnosis of alcohol drinking and in monitoring therapeutic interventions. Biomolecules. 2015;5(3):1339–85.

    Article  CAS  Google Scholar 

  23. Caslavska J, Thormann W. Monitoring of alcohol markers by capillary electrophoresis. J Sep Sci. 2013;36:75–95.

    Article  CAS  Google Scholar 

  24. Bortolotti F, Tagliaro F. Biomarkers for the identification of alcohol use/abuse: a critical review. Forensic Sci Rev. 2011;23:55–72.

    CAS  Google Scholar 

  25. Joneli J, Wanzenried U, Schiess J, Lanz C, Caslavska J, Thormann W. Determination of carbohydrate-deficient transferrin in human serum by capillary zone electrophoresis: evaluation of assay performance and quality assurance over a 10-year period in the routine arena. Electrophoresis. 2013;34(11):1563–71.

    Article  CAS  Google Scholar 

  26. Bortolotti F, De Paoli G, Tagliaro F. Carbohydrate-deficient transferrin (CDT) as a marker of alcohol abuse: a critical review of the literature 2001–2005. J Chromatogr B Analyt Technol Biomed Life Sci. 2006;841(1–2):96–109.

    Article  CAS  Google Scholar 

  27. Helander A, Husa A, Jeppsson JO. Improved HPLC method for carbohydrate-deficient transferrin in serum. Clin Chem. 2003;49(11):1881–90.

    Article  CAS  Google Scholar 

  28. Joneli J, Lanz C, Thormann W. Capillary zone electrophoresis determination of carbohydrate-deficient transferrin using the new CEofix reagents under high-resolution conditions. J Chromatogr A. 2006;1130(2):272–80.

    Article  CAS  Google Scholar 

  29. Jeppsson JO, Arndt T, Schellenberg F, Wielders JPM, Anton RF, Whitfield JB, et al. Toward standardization of carbohydrate-deficient transferrin (CDT) measurements: I. Analyte definition and proposal of a candidate reference method. Clin Chem Lab Med. 2007;45(4):558–62.

    Article  CAS  Google Scholar 

  30. James NG, Byrne SL, Steere AN, Smith VC, MacGillivray RT, Mason AB. Inequivalent contribution of the five tryptophan residues in the c-lobe of human serum transferrin to the fluorescence increase when iron is released. Biochemistry. 2009;48:2858–67.

    Article  CAS  Google Scholar 

  31. James NG, Byrne SL, Mason AB. Incorporation of 5-hydroxytryptophan into transferrin and its receptor allows assignment of the pH induced changes in intrinsic fluorescence when iron is released. Biochim Biophys Acta. 2009;1794:532–40.

    Article  CAS  Google Scholar 

  32. Harris WR, Messori L. Comparative study of aluminium(III), gallium(III), indium(III), and thallium(III) binding to human serum transferrin. Coord Chem Rev. 2002;228:237–62.

    Article  CAS  Google Scholar 

  33. ZohraChikh Z, Ha–Duong NT, Miquel G, El HageChahine JM. Gallium uptake by transferrin and interaction with receptor 1. J Biol Inorg Chem. 2007;12:90–100.

    Google Scholar 

  34. Bauer N, Panak PJ. Influence of carbonate on the complexation of Cm(III) with human serum transferrin studied by time-resolved laser fluorescence spectroscopy (TRLFS). New J Chem. 2015;39:1375–81.

    Article  CAS  Google Scholar 

  35. Guo W, Zheng W, Luo Q, Li X, Zhao Y, Xiong S, et al. Transferrin serves as a mediator to deliver organometallic ruthenium(II) anticancer complexes into cells. Inorg Chem. 2013;52:5328–38.

    Article  CAS  Google Scholar 

  36. White GF, Litvinenko KL, Meech SR, Andrews DL, Thomson AJ. Multiphoton-excited luminescence of a lanthanide ion in a protein complex: Tb3+ bound to transferrin. Photochem Photobiol Sci. 2004;3:47–55.

    Article  CAS  Google Scholar 

  37. Leonard JP, Gunnlaugsson T. Luminescent Eu(III) and Tb(III) complexes :developing lanthanide luminescent-based devices. J Fluoresc. 2005;15:585–95.

    Article  CAS  Google Scholar 

  38. Kataoka Y, Shinoda S, Tsukube H. Transferrin-terbium complexes as luminescent pH sensing devices. J Nanosci Nanotechnol. 2008;8:1–3.

    Article  Google Scholar 

  39. Harte AJ, Jensen P, Plush SE, Kruger PE, Gunnlaugsson T. A dinuclear lanthanide complex for the recognition of bis(carboxylates): formation of terbium(III) luminescent self-assembly ternary complexes in aqueous solution. Inorg Chem. 2006;45:9465–74.

    Article  CAS  Google Scholar 

  40. Bertaso A, Sorio D, Vandoros A, De Palo EF, Bortolotti F, Tagliaro F. The use of finger-prick dried blood spots (fpDBS) and capillary electrophoresis for carbohydrate deficient transferrin (CDT) screening in forensic toxicology. Electrophoresis. 2016. doi:10.1002/elps.201500588.

    Google Scholar 

  41. Taverniers I, De Loose M, Van Bockstaele E. Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance. Trends Anal Chem. 2004;23–8:535–52.

    Article  Google Scholar 

  42. Helander A, Wielders J, Anton R, Arndt T, Bianchi V, Deenmamode J, et al. Standardisation and use of the alcohol biomarker carbohydrate-deficient transferrin (CDT). Clin Chim Acta. 2016;459:19–24.

    Article  CAS  Google Scholar 

  43. Passing H, Bablok. A new biometrical procedure for testing the equality of measurements from two different analytical methods. Application of linear regression procedures for method comparison studies in clinical chemistry, part I. J Clin Chem Clin Biochem. 1983;21(11):709–20.

    CAS  Google Scholar 

  44. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307–10.

    Article  CAS  Google Scholar 

  45. Kenan N, Husand S, Helander A. Importance of HPLC confirmation of problematic carbohydrate-deficient transferrin (CDT) results from a multicapillary electrophoresis routine method. Clin Chim Acta. 2010;411(23–24):1945–50.

    Article  CAS  Google Scholar 

  46. del Castillo BE, Montes-Bayón M, García Alonso JI, Caruso JA, Sanz-Medel A. Novel HPLC-ICP-MS strategy for the determination of beta2-transferrin, the biomarker of cerebrospinal fluid (CSF) leakage. Analyst. 2010;135:1538–40.

    Article  Google Scholar 

  47. Bianchi V, Ivaldi A, Raspagni A, Arfini C, Vidali M. Pregnancy and variations of carbohydrate-deficient transferrin levels measured by the candidate. Reference HPLC method. Alcohol Alcohol. 2011;46:123–7.

    Article  CAS  Google Scholar 

  48. Veronesi A, Rota C, Trenti T, Cariani E. Carbohydrate-deficient transferrin determination in a clinical setting: consistency between capillary electrophoresis assays and utility of HPLC as a confirmatory test. J Clin Lab Anal. 2015. doi:10.1002/jcla.21885.

    Google Scholar 

  49. Bergström JP, Helander A. Clinical characteristics of carbohydrate-deficient transferrin (%disialotransferrin) measured by HPLC: sensitivity, specificity, gender effects, and relationship with other alcohol biomarkers. Alcohol Alcohol. 2008;43(4):436–41.

    Article  Google Scholar 

  50. De Palo EF, Tagliaro F, Bortolotti F, Sorio D. Patent No. MI2014A000395 and No. PCT/EP2015/054896.

Download references

Acknowledgements

The authors wish to thank Veronica Paterlini for her excellent work measuring the fluorescence spectra and Andrew Bailey for his invaluable language revision. This work was supported in part by a grant from the Department of Diagnostics and Public Health, Unit of Forensic Medicine, University of Verona, Italy.

University of Verona Patent No. MI2014A000395 and No. PCT/EP2015/054896

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Tagliaro.

Ethics declarations

Informed consent

The study protocol was approved by the local ethics committee. Informed consent was obtained before sample collection.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

University of Verona Patent No. MI2014A000395 and No. PCT/EP2015/054896.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorio, D., De Palo, E.F., Bertaso, A. et al. Fluorescent adduct formation with terbium: a novel strategy for transferrin glycoform identification in human body fluids and carbohydrate-deficient transferrin HPLC method validation. Anal Bioanal Chem 409, 1369–1378 (2017). https://doi.org/10.1007/s00216-016-0069-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-0069-9

Keywords

Navigation