Skip to main content

Advertisement

Log in

Factors Associated with Determination of Root 22Na+ Influx in the Salt Accumulation Halophyte Suaeda maritima

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Salinity is an increasing problem for agricultural production worldwide. The result of low-affinity Na+ uptake is toxic to the cytoplasm of most crop plants. Nevertheless, the pathways for this low-affinity Na+ uptake are still uncertain. In this work we used 22Na+ isotope tracing technology to investigate factors associated with determination of root 22Na+ influx in the salt accumulation halophyte Suaeda maritima. We found that a 2 min of exposure to the 22Na+ labeled uptake solution was optimal for determining 22Na+ influx into excised roots of S. maritima and that 7 min of blotting is suitable in 22Na+ influx experiments. 22Na+ influx did not increase linearly with the increasing external Na+ concentration, in the range tested, of 2 to 300 mM NaCl. But root 22Na+ influx and root Na+ concentration were well correlated. 22Na+ influx into excised roots of S. maritima was not, however, well correlated with the plant size. All the above results indicated further that this 22Na+ isotope influx procedure is a good method for quantify Na+ uptake rate by the roots of the salt accumulation halophyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Greenway M, Munns R (1980) Mechanisms of salt tolerance in non-halophytes. Annu Rev Plant Physiol 31:149–190

    Article  CAS  Google Scholar 

  2. Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  PubMed  Google Scholar 

  3. Zhang JL, Flowers TJ, Wang SM (2010) Mechanisms of sodium uptake by roots of higher plant. Plant Soil 326:45-60

    Google Scholar 

  4. Zhang JL (2008) Low-affinity Na+ uptake and accumulation in the halophyte Suaeda maritima. PhD thesis. Lanzhou University, Lanzhou, P. R. China

  5. Yeo AR, Flowers TJ (1980) Salt tolerance in the halophyte Suaeda maritima (L.) Dum.: evaluation of the effect of salinity upon growth. J Exp Bot 31:1171–1183

    Article  CAS  Google Scholar 

  6. Wang SM, Zheng WJ, Ren JZ et al (2002) Selectivity of various types of salt-resistant plants for K+ over Na+. J Arid Environ 52:457–472

    Article  Google Scholar 

  7. Flowers TJ, Hall JL, Ward ME (1976) Salt tolerance in halophyte Suaeda maritima—further properties of enzyme malate dehydrogenase. Phytochemistry 15:1231–1234

    Article  CAS  Google Scholar 

  8. Clipson NJW (1980) Salt tolerance in Suaeda maritima L. Dum. PhD thesis. University of Sussex, Falmer, Brighton, UK

  9. Yeo AR, Flowers TJ (1986) Ion transport in Suaeda maritima: its relation to growth and implications for the pathway of radial transport of ions across the root. J Exp Bot 37:143–159

    Article  Google Scholar 

  10. Clipson NJW (1987) Salt tolerance in the halophyte Suaeda maritima L. Dum.growth, ion and water relations and gas exchange in response to altered salinity. J Exp Bot 38:1996–2004

    Article  Google Scholar 

  11. Reimann C (1992) Sodium exclusion by Chenopodium species. J Exp Bot 43:503–510

    Article  CAS  Google Scholar 

  12. Reimann C, Breckle SW (1993) Sodium relations in Chenopodiaceae—a comparative approach. Plant Cell Environ 16:323–328

    Article  CAS  Google Scholar 

  13. Wang CM, Zhang JL, Liu XS et al (2009) Puccinellia tenuiflora maintains a low Na+ level under salinity by limiting unidirectional Na+ influx resulting in a high selectivity for K+ over Na+. Plant Cell Environ 32:486–496

    Article  CAS  PubMed  Google Scholar 

  14. Wang SM, Zhao GQ, Gao YS et al (2004) Puccinellia tenuiflora exhibits stronger selectivity for K+ over Na+ than wheat. J Plant Nutr 27:1841–1857

    Article  CAS  Google Scholar 

  15. Steinitz B, Jacoby B (1974) Energetics of 22Na+ absorption by bean-leaf slices. Ann Bot 38:453–457

    CAS  Google Scholar 

  16. Cheeseman JM, Bloebaum PD, Wickens LK (1985) Short term 22Na+ and 42K+ uptake in intact, mid-vegetative Spergularia marina plants. Physiol Plant 65:460–466

    Article  CAS  Google Scholar 

  17. Matoh T, Matsusshita N, Takahashi E (1988) Salt tolerance of the reed plant Phragmites communis. Physiol Plant 72:8–14

    Article  Google Scholar 

  18. Nevo E, Gorham J, Beiles A (1992) Variation for 22Na uptake in wild emmer wheat, Triticum dicoccoides in Israel: salt tolerance resources for wheat improvement. J Exp Bot 43:511–518

    Article  CAS  Google Scholar 

  19. Essah PA, Davenport R, Tester M (2003) Sodium influx and accumulation in Arabidopsis. Plant Physiol 133:307–318

    Article  CAS  PubMed  Google Scholar 

  20. Davenport RJ, Muñoz-Mayor A, Jha D et al (2007) The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant Cell Environ 30:497–507

    Article  CAS  PubMed  Google Scholar 

  21. Wang SM, Zhang JL, Flowers TJ (2007) Low-affinity Na+ uptake in the halophyte Suaeda maritima. Plant Physiol 145:559–571

    Article  CAS  PubMed  Google Scholar 

  22. Britto DT, Kronzucker HJ (2006) Futile cycling at the plasma membrane: a hallmark of low-affinity nutrient transport. Trends Plant Sci 11:529–534

    Article  CAS  PubMed  Google Scholar 

  23. Szczerba MW, Britto DT, Kronzucker HJ (2006) The face value of ion fluxes: the challenge of determining influx in the low-affinity transport range. J Exp Bot 57:3293–3300

    Article  CAS  PubMed  Google Scholar 

  24. Britto DT, Szczerba MW, Kronzucker HJ (2006) A new, non-perturbing, sampling procedure in tracer exchange measurements. J Exp Bot 57:1309–1314

    Article  CAS  PubMed  Google Scholar 

  25. Flowers TJ, Hajibagheri MA (2001) Salinity tolerance in Hordeum vulgare: ion concentrations in root cells of cultivars differing in salt tolerance. Plant Soil 231:1–9

    Article  CAS  Google Scholar 

  26. Asher CJ, Ozanne PG (1967) Growth and potassium content of plants in solution cultures maintained at constant potassium concentrations. Soil Sci 103:155–161

    Article  CAS  Google Scholar 

  27. Epstein E, Rains DW, Elzam OE (1963) Resolution of dual mechanisms of potassium absorption by barley roots. Proc Natl Acad Sci USA 49:684–692

    Article  CAS  PubMed  Google Scholar 

  28. Epstein E (1966) Dual pattern of ion absorption by plant cells and by plants. Nature 212:1324–1327

    Article  CAS  Google Scholar 

  29. Cheeseman JM (1982) Pump leak sodium fluxes in low salt corn Zea mays roots. J Membr Biol 70:157–164

    Article  CAS  Google Scholar 

  30. Cheeseman JM, Wickens LK (1986) Control of Na+ and K+ in Spergularia marina. II. Effects of plant size tissue ion contents and root-shoot ratio at moderate salinity. Physiol Plant 67:7–14

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (grant No. 2007CB108901) and the National Natural Science Foundation of China (grant No. 30671488 and 30700562). We also thank anonymous reviewers for their constructive comments and suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suo-Min Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, JL., Wetson, A.M., Wang, SM. et al. Factors Associated with Determination of Root 22Na+ Influx in the Salt Accumulation Halophyte Suaeda maritima . Biol Trace Elem Res 139, 108–117 (2011). https://doi.org/10.1007/s12011-010-8644-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8644-y

Keywords

Navigation