Skip to main content

Dynamic Responses of the Halophyte Suaeda maritima to Various Levels of External NaCl Concentration

  • Living reference work entry
  • First Online:
Handbook of Halophytes

Abstract

Background and Aims Salinity is an increasingly serious problems for agricultural production worldwide. However, little is known about the dynamic responses of plants to salinity as most experiments report single time points after a salt treatment. So here, the aim of our work was to characterize the dynamic responses of the salt-accumulating halophyte Suaeda maritima to various NaCl concentrations which could aid in identifying the genes involved in salt tolerance. Methods Seedlings of S. maritima were treated with 25, 150, or 200 mM NaCl for various periods (0–480 h) before plant biomass, tissue water content, tissue Na+ concentration, 22Na+ influx, and tissue K+ concentration were measured. Results It was found that higher salinity (150 and 200 NaCl) significantly inhibited root growth during long-term treatments. Root Na+ concentrations reached their peak values of 140, 205, and 310 mM at 192, 240, and 360 h after treatments of 25, 150, and 200 mM NaCl, respectively, and then decreased slowly with the prolonging of salt treatments. However, shoot Na+ concentration increased sharply between 6 and 12 h after the three salinity treatments and then increased slowly to their peak values of 376, 616, and 715 mM after 480 h of the three salt treatments. 22Na+ influx was significantly higher in 150 and 200 mM NaCl concentrations than in 25 mM with obvious increases after 0.5 h and 12 h of treatment and subsequently remained stable or decreased slowly until the end of treatments. These results were consistent with the tissue Na+ concentrations (mM). In contrast, K+ concentrations decreased slowly in both roots and shoots such that by the end (480 h) of the three NaCl treatments, the reductions were 37%, 64%, and 54.5% in the shoots and 51%, 14.8%, and 5.4% in the roots, respectively, compared with that before treatment (0 h). Conclusions Consequently, we proposed that the coordinated regulation of K+ and Na+ plays an important role in the long-term survival of S. maritima from salinity and reducing root growth is another strategy to decrease net Na+ uptake; Na+ exclusion might also occur even in salt-accumulating halophytes when exposed to salt solution over the long term when sufficient Na+ has accumulated in its tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AKT:

Arabidopsis K+ transporter

DW:

dry weight

FW:

fresh weight

HAK:

high-affinity K+ transporter

HKT:

high-affinity K+ transporter

KT:

K+ transporter

KUP:

K+ uptake transporter

RA:

remaining activity of the 22Na+ radioactivity in each root (cpm)

SD:

standard deviation

SOS1:

salt overly sensitive 1

SpAc:

specific activity of the 22Na+ in the solution (cpm μmol−1 Na+)

References

  • Ahmad, I., & Maathuis, F. J. M. (2014). Cellular and tissue distribution of potassium: Physiological relevance, mechanisms and regulation. Journal of Plant Physiology, 171, 708–714.

    Article  CAS  PubMed  Google Scholar 

  • Almeida, D. M., Oliveira, M. M., & Saibo, N. J. (2017). Regulation of Na+ and K+ homeostasis in plants: Towards improved salt stress tolerance in crop plants. Genetics and Molecular Biology, 40, 326–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Álvarez-Aragón, R., Haro, R., Benito, B., & Rodríguez-Navarro, A. (2016). Salt intolerance in Arabidopsis: Shoot and root sodium toxicity, and inhibition by sodium-plus-potassium over accumulation. Planta, 243, 97–114.

    Article  PubMed  CAS  Google Scholar 

  • Bailey-Serres, J., Parker, J. E., Ainsworth, E. A., & Oldroyd, G. E. D. (2019). Schroeder JI (2019) genetic strategies for improving crop yields. Nature, 575(7781), 109–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behr, J. H., Bouchereau, A., Berardocco, S., Seal, C. E., Flowers, T. J., & Zorb, C. (2017). Metabolic and physiological adjustment of Suaeda maritima to combined salinity and hypoxia. Annals of Botany, 119, 965–976.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Z., Pottosin, I. I., Cuin, T. A., Fuglsang, A. T., Tester, M., Jha, D., Zepeda-Jazo, I., Zhou, M., Palmgren, M. G., Newman, I. A., & Shabala, S. (2007). Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley. Plant Physiology, 145, 1714–1725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clipson, N. J. W. (1987). Salt tolerance in the halophyte Suaeda maritima L. Dum. Growth, ion and water relations and gas exchange in response to altered salinity. Journal of Experimental Botany, 38, 1996–2004.

    Article  Google Scholar 

  • Essah, P. A., Davenport, R., & Tester, M. (2003). Sodium influx and accumulation in Arabidopsis. Plant Physiology, 133, 307–318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes. The New Phytologist, 179, 945–963.

    Article  CAS  PubMed  Google Scholar 

  • Flowers, T. J., & Hajibagheri, M. A. (2001). Salinity tolerance in Hordeum vulgare: Ion concentrations in root cells of cultivars differing in salt tolerance. Plant and Soil, 231, 1–9.

    Article  CAS  Google Scholar 

  • Flowers, T. J., Munns, R., & Colmer, T. D. (2014). Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Annals of Botany, 115, 419–431.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garcia, A., Rizzo, C. A., Ud-Din, J., Bartos, S. L., Senadhira, D., Flowers, T. J., & Yeo, A. R. (1997). Sodium and potassium transport to the xylem are inherited independently in rice, and the mechanism of sodium: Potassium selectivity differs between rice and wheat. Plant, Cell & Environment, 20, 1167–1174.

    Article  CAS  Google Scholar 

  • Garciadeblas, B., Senn, M. E., Banuelos, M. A., & Rodriguez-Navarro, A. (2003). Sodium transport and HKT transporters: The rice model. The Plant Journal, 34, 788–801.

    Article  CAS  PubMed  Google Scholar 

  • Gong, Z., Xiong, L., Shi, H., Yang, S., Herrera-Estrella, L. R., Xu, G., Chao, D. Y., Li, J., Wang, P. Y., Qin, F., Li, J., Ding, Y., Shi, Y., Wang, Y., Yang, Y., Guo, Y., & Zhu, J. K. (2020). Plant abiotic stress response and nutrient use efficiency. Science China. Life Sciences. https://doi.org/10.1007/s11427-020-1683-x.

  • Guo, Q., Wang, P., Ma, Q., Zhang, J. L., Bao, A. K., & Wang, S. M. (2012). Selective transport capacity for K+ over Na+ is linked to the expression levels of PtSOS1 in halophyte Puccinellia tenuiflora. Functional Plant Biology, 39, 1047–1057.

    Article  CAS  PubMed  Google Scholar 

  • Hauser, F., & Horie, T. (2010). A conserved primary salt tolerance mechanism mediated by HKT transporters: A mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant, Cell & Environment, 33, 552–565.

    Article  CAS  Google Scholar 

  • Huang, L., Kuang, L., Wu, L., Shen, Q., Han, Y., Jiang, L., Wu, D., & Zhang, G. (2020). The HKT transporter HvHKT1;5 negatively regulates salt tolerance. Plant Physiology, 182, 584–596.

    Article  CAS  PubMed  Google Scholar 

  • Isayenkov, S. V., & Maathuis, F. J. M. (2019). Plant salinity stress: Many unanswered questions remain. Frontiers in Plant Science, 10, 80.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kronzucker, H. J., Coskun, D., Schulze, L. M., Wong, J. R., & Britto, D. T. (2013). Sodium as nutrient and toxicant. Plant and Soil, 369, 1–23.

    Article  CAS  Google Scholar 

  • Ma, Q., Yue, L. J., Zhang, J. L., Wu, G. Q., Bao, A. K., & Wang, S. M. (2012). Sodium chloride improves photosynthesis and water status in the succulent xerophyte Zygophyllum xanthoxylum. Tree Physiology, 32, 4–13.

    Article  CAS  PubMed  Google Scholar 

  • Ma, Q., Hu, J., Zhou, X. R., Yuan, H. J., Kumar, T., Luan, S., & Wang, S. M. (2017). ZxAKT1 is essential for K+ uptake and K+/Na+ homeostasis in the succulent xerophyte Zygophyllum xanthoxylum. The Plant Journal, 90, 48–60.

    Article  CAS  PubMed  Google Scholar 

  • Maathuis, F. J., & Amtmann, A. (1999). K+ nutrition and Na+ toxicity: The basis of cellular K+/Na+ ratios. Annals of Botany, 84, 123–133.

    Article  CAS  Google Scholar 

  • Munns, R. (1985). Na+, K+ and Cl in xylem sap flowing to shoots of NaCl-treated barley. Journal of Experimental Botany, 36, 1032–1042.

    Article  CAS  Google Scholar 

  • Munns, R. (2005). Genes and salt tolerance: Bringing them together. The New Phytologist, 167, 645–663.

    Article  CAS  PubMed  Google Scholar 

  • Munns, R., & Gilliham, M. (2015). Salinity tolerance of crops – What is the cost? The New Phytologist, 208, 668–673.

    Article  CAS  PubMed  Google Scholar 

  • Munns, R., Passioura, J. B., Colmer, T. D., & Byrt, C. S. (2020). Osmotic adjustment and energy limitations to plant growth in saline soil. The New Phytologist, 225(3), 1091–1096.

    Article  CAS  PubMed  Google Scholar 

  • Olías, R., Eljakaoui, Z., Li, J., De Morales, P. A., Marín-Manzano, M. C., Pardo, J. M., & Belver, A. (2009). The plasma membrane Na+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs. Plant, Cell & Environment, 32, 904–916.

    Article  Google Scholar 

  • Peng, Y. H., Zhu, Y. F., Mao, Y. Q., Wang, S. M., Su, W. A., & Tang, Z. C. (2004). Alkali grass resists salt stress through high K+ and an endodermis barrier to Na+. Journal of Experimental Botany, 55, 939–949.

    Article  CAS  PubMed  Google Scholar 

  • Qin, H., Wang, J., Chen, X., Wang, F., Peng, P., Zhou, Y., Miao, Y., Zhang, Y., Gao, Y., Qi, Y., Zhou, J., & Huang, R. (2019). Rice OsDOF15 contributes to ethylene-inhibited primary root elongation under salt stress. The New Phytologist. https://doi.org/10.1111/nph.15824.

  • Rigó, G., Valkai, I., Faragó, D., Kiss, E., Van Houdt, S., Van de Steene, N., Hannah, M. A., & Szabados, L. (2016). Gene mining in halophytes: Functional identification of stress tolerance genes in Lepidium crassifolium. Plant, Cell & Environment, 39, 2074–2284.

    Article  CAS  Google Scholar 

  • Shabala, S. (2013). Learning from halophytes: Physiological basis and strategies to improve abiotic stress tolerance in crops. Annals of Botany, 112, 1209–1221.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shabala, S., & Cuin, T. A. (2008). Potassium transport and plant salt tolerance. Physiologia Plantarum, 133, 651–669.

    Article  CAS  PubMed  Google Scholar 

  • Shabala, S., & Pottosin, I. (2014). Regulation of potassium transport in plants under hostile conditions: Implications for abiotic and biotic stress tolerance. Physiologia Plantarum, 151, 257–279.

    Article  CAS  PubMed  Google Scholar 

  • Shi, H., Quintero, F. J., Pardo, J. M., & Zhu, J. K. (2002). The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell, 14, 465–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su, N., Wu, Q., Chen, J., Shabala, L., Mithöfer, A., Wang, H., Qu, M., Yu, M., Cui, J., & Shabala, S. (2019). GABA operates upstream of H+-ATPase and improves salinity tolerance in Arabidopsis by enabling cytosolic K+ retention and Na+ exclusion. Journal of Experimental Botany, 70(21), 6349–6361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tester, M., & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 91, 503–527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, S. M., Zheng, W. J., Ren, J. Z., & Zhang, C. L. (2002). Selectivity of various types of salt-resistant plants for K+ over Na+. Journal of Arid Environments, 52, 457–472.

    Article  Google Scholar 

  • Wang, S. M., Zhang, J. L., & Flowers, T. J. (2007). Low-affinity Na+ uptake in the halophyte Suaeda maritima. Plant Physiology, 145, 559–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, C. M., Zhang, J. L., Liu, X. S., Li, Z., Wu, G. Q., Cai, J. Y., Flowers, T. J., & Wang, S. M. (2009). Puccinellia tenuiflora maintains a low Na+ level under salt stress by limiting unidirectional Na+ influx resulting in a high selectivity for K+ over Na+. Plant, Cell & Environment, 32, 486–496.

    Article  CAS  Google Scholar 

  • Wang, C. M., Xia, Z. R., Wu, G. Q., Yuan, H. J., Wang, X. R., Li, J. H., Tian, F. P., Zhang, Q., Zhu, X. Q., He, J. J., Kumar, T., Wang, X. L., & Zhang, J. L. (2016). The coordinated regulation of Na+ and K+ in Hordeum brevisubulatum responding to time of salt stress. Plant Science, 252, 358–366.

    Article  CAS  PubMed  Google Scholar 

  • Watson, R., Pritchard, J., & Malone, M. (2001). Direct measurement of sodium and potassium in the transpiration stream of salt-excluding and non-excluding varieties of wheat. Journal of Experimental Botany, 52, 1873–1881.

    Article  CAS  PubMed  Google Scholar 

  • Wetson, A. M., Zörb, C., John, E. A., & Flowers, T. J. (2012). High phenotypic plasticity of Suaeda maritima observed under hypoxic conditions in relation to its physiological basis. Annals of Botany, 109, 1027–1036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeo, A. R. (1981). Salt tolerance in the halophyte Suaeda maritima (L.) Dum.: Intracellular compartmentation of ions. Journal of Experimental Botany, 32, 487–497.

    Article  CAS  Google Scholar 

  • Yuan, H. J., Ma, Q., Wu, G. Q., Wang, P., Hu, J., & Wang, S. M. (2015). ZxNHX controls Na+ and K+ homeostasis at the whole-plant level in Zygophyllum xanthoxylum through feedback regulation of the expression of genes involved in their transport. Annals of Botany, 115, 495–507.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J. L., & Shi, H. (2013). Physiological and molecular mechanisms of plant salt tolerance. Photosynthesis Research, 115, 1–22.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J. L., Flowers, T. J., & Wang, S. M. (2010). Mechanisms of sodium uptake by roots of higher plant. Plant and Soil, 326, 45–60.

    Article  CAS  Google Scholar 

  • Zhang, J. L., Wetson, A. M., Wang, S. M., Gurmani, A. R., Bao, A. K., & Wang, C. M. (2011). Factors associated with determination of root 22Na+ influx in the salt accumulation halophyte Suaeda maritima. Biological Trace Element Research, 139, 108–117.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J. L., Wang, S. M., & Flowers, T. J. (2013). Differentiation of low-affinity Na+ uptake pathways and kinetics of the effects of K+ on Na+ uptake in the halophyte Suaeda maritima. Plant and Soil, 368, 629–640.

    Article  CAS  Google Scholar 

  • Zhang, M., Smith, J. A., Harberd, N. P., & Jiang, C. (2016). The regulatory roles of ethylene and reactive oxygen species (ROS) in plant salt stress responses. Plant Molecular Biology, 91, 651–659.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, M., Cao, Y., Wang, Z., Wang, Z. Q., Shi, J., Liang, X., Song, W., Chen, Q., Lai, J., & Jiang, C. (2018). A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na+ exclusion and salt tolerance in maize. The New Phytologist, 217, 1161–1176.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Key Research and Development Program of China (grant No. 2017YFC0504802), National Basic Research Program of China (grant No. 2014CB138701), and National Natural Science Foundation of China (grant No. 31222053).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-Lin Zhang or Suo-Min Wang .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zhang, JL. et al. (2020). Dynamic Responses of the Halophyte Suaeda maritima to Various Levels of External NaCl Concentration. In: Grigore, MN. (eds) Handbook of Halophytes. Springer, Cham. https://doi.org/10.1007/978-3-030-17854-3_58-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17854-3_58-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17854-3

  • Online ISBN: 978-3-030-17854-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics