Skip to main content
Log in

Cell Wall Accumulation of Cu Ions and Modulation of Lignifying Enzymes in Primary Leaves of Bean Seedlings Exposed to Excess Copper

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Copper is both a nutrient and an environmental toxin that is taken up by plants. In order to determine the subcellular localization of copper and to assess the resulting metabolic changes, we exposed 14-day-old bean seedlings to nutrient solutions containing varying concentrations of Cu2+ ions for 3 days. Biochemical analyses revealed that the cell wall was the major site of Cu2+ accumulation in the leaves of treated plants. Excess copper modified the activity of lignifying peroxidases in both soluble and ionic cell wall-bound fraction. The activity of ionic GPX (guaiacol peroxidase, EC 1.11.1.7) was increased by 50 and 75 µM CuSO4. The activities of both ionic CAPX (coniferyl alcohol peroxidase, EC 1.11.1.4) and NADH oxidase were increased by both copper concentrations tested. While soluble CAPX activity decreased in leaves treated by all copper concentrations tested, the activity of soluble NADH oxidase remained unchanged at 50 µM and was enhanced at 75 µM. Treatment with CuSO4 also increased the abundance of total phenol compounds and induced stimulation in the activity of PAL (phenylalanine ammonia lyase, EC. 4.3.1.5). Using histochemistry in combination with fluorescence microscopy we show that bean leaves from copper-exposed plants displayed biochemical and structural modifications reinforcing the cell walls of their xylem tissues. On the other hand, the perivascular fiber sclerenchyma appeared to be less developed in treated leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Reichman SM (2002) The responses of plants to metal toxicity: a review focusing on copper, manganese and zinc. Australian minerals and energy environment foundation, Melbourne, Australia. p 54

  2. Yruela I (2005) Copper in plants. Braz J Plant Physiol 17(1):145–156

    Article  CAS  Google Scholar 

  3. Ait Ali N, Pilar Bernal M, Ater M (2002) Tolerance and bioaccumulation of copper in Phragmites australis and Zea mays. Plant Soil 239:103–111

    Article  Google Scholar 

  4. Souguir D, El Ferjani E, Ledoigt G, Goupil P (2008) Exposure of Vicia faba and Pisum sativum to copper-induced genotoxicity. Protoplasma 233:203–207

    Article  CAS  PubMed  Google Scholar 

  5. Liu D, Jiang W, Meng O et al (2009) Cytogenetical and ultrastructural effects of copper on root meristem cells of Allium sativum L. Biocell 33:25–32

    CAS  PubMed  Google Scholar 

  6. Bouazizi H, Jouili H, Geitmann A et al (2009) Structural changes of cell wall and lignifying enzymes modulations in bean roots in response to copper stress. Biol Trace Elem Res (in press). doi:10.1007/s12011-009-8530-7

  7. CH LCH, Chen LM, Liu ZH (2005) Rapid effect of copper on lignin biosynthesis in soybean roots. Plant Sci 168:855–861

    Article  Google Scholar 

  8. Maksymiec W (2007) Signaling responses in plants to heavy metal stress. Acta Physiol Plant 29:177–187

    Article  CAS  Google Scholar 

  9. Delannoy E, Marmey P, Penel C et al (2004) Les peroxydases végétales de classe III. Acta Bot Gallica 151(4):353–380

    CAS  Google Scholar 

  10. Gao S, Yan R, Cao M et al (2008) Effect of copper on growth, antioxidant enzymes and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedling. Plant Soil Environ 54:117–122

    CAS  Google Scholar 

  11. Van Tunen AJ, Mol JNM (1990) Control of flavonoid synthesis and manipulation of flower colour. In: Grierson D (ed) Plant biotechnology series. Blacky and Son, Glasgow, Scotland, pp 94–130

    Google Scholar 

  12. Booker FL, Antonnen S, Heagle AS (1996) Catechin, and lignin contents of loblolly pine (Pinus taeda L.) needles after chronic exposure to ozone. New Phytol 132:483–492

    Article  CAS  Google Scholar 

  13. Santiago LMS, Louro RP, Dulce E (2000) Compartmentation of phenolic compounds and phenylalanine ammonia-lyase in leaves of Phyllanthus tenellus Roxb. and their induction by copper sulfate. Annals of Botanny 86:1023–1032

    Article  CAS  Google Scholar 

  14. Ganeva G, Zozikov E (2007) Effect of increasing Cu2+ concentrations on growth and content of free phenols in two lines of wheat (triticum aestivum) with different tolerance. Gen Appl Plant Physiology 33(1–2):75–82

    CAS  Google Scholar 

  15. Mazhoudi S, Chaoui A, Ghorbal MH et al (1997) Response of antioxidant enzymes to excess copper in tomato (Mill.). Plant Sci 127:182–186

    Article  Google Scholar 

  16. Peng HY, Yang X, Tian S (2005) Accumulation and ultrastructural distribution of copper in Elsholtzia splendens. J of Z hejiang Un SCI 6B(5):311–318

    Article  CAS  Google Scholar 

  17. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principal of protein-dye binding. Anal Biochem 72:248–258

    Article  CAS  PubMed  Google Scholar 

  18. Fielding JL, Hall JL (1978) A biochemical and cytochemical study of peroxidase activity in roots of Pisum sativum. J Exp Bot 29:979–986

    Google Scholar 

  19. Pedereńo MA, Barcelo AR, Sabatter F et al (1989) Control by pH of cell wall peroxidase activity involved in lignification. Plant Cell Physiol 30:237–241

    Google Scholar 

  20. Ishida A, Ookubo K, Ono K (1987) Formation of hydrogen peroxide by NAD(P)H oxidation with isolated cell wall-associated peroxidase from cultured liverwort cells, Marchantia polymorpha L. Plant Cell Physiol 28:723–726

    CAS  Google Scholar 

  21. Jouili H, El Ferjani E (2003) Changes in antioxidant and lignifying enzyme activities in sunflower roots (Helianthus annuus L.) stressed with copper excess. C R Biologies 326:639–644

    Article  CAS  PubMed  Google Scholar 

  22. Swain T, Hillis WE (1959) The phenolic constituents of Prunus domestica 1. The quantitative analysis of phenolic constituent. J Sci Food Agric 10:63–68

    Article  CAS  Google Scholar 

  23. Brundrett MC, Enstone DE, Peterson CA (1988) A berberine–aniline blue fluorescent staining procedure for suberin, lignin, and callose in plant tissue. Protoplasma 146:133–142

    Article  Google Scholar 

  24. Fry SC, Miller JG, Dumville JC (2002) A proposed role for copper ions cell wall loosening. Plant Soil 247:57–67

    Article  CAS  Google Scholar 

  25. Bouazizi H, Jouili H, Geitmann A et al (2008) Effect of copper excess on H2O2 accumulation and peroxidase activities in bean roots. Acta Biol Hung 59(2):233–245

    Article  PubMed  Google Scholar 

  26. Hayens R (1980) Ion exchange properties of roots and ionic interactions with the root POPLsm: Their role in ion accumulation by plants. Botany Review 46:75–99

    Article  Google Scholar 

  27. Quartacci MF, Cosi E, Meneguzzo S et al (2003) Uptake and translocation of copper in Brassicaceae. J Plant Nutr 26:1065–1083

    Article  CAS  Google Scholar 

  28. Mullen MD, Wolf DC, Beveridge TJ et al (1992) Sorption of heavy metala by soil fungi Aspergillus niger and Mucor ruoxii. Soil Biol Biochem 24:129–135

    Article  CAS  Google Scholar 

  29. O'Neill M, Albersheim P, Darvill AG (1990) The pectic polysaccharidesof primary cell walls. In: Dey PM (ed) Methods in plant biochemistry, vol. 2. Academic Press, London, pp 415–441

    Google Scholar 

  30. Sommer-Knudsen J, Bacic A (1997) A micro-scale method for determining relative metal-binding affinities of proteins. Mol Biotechnol 8:215–218

    Article  CAS  PubMed  Google Scholar 

  31. Bown DP, Bolwell GP, Gatehouse JA (1993) Characterisation of potato (Solanum tuberosum L.) extensins—a novel extensin-like cDNA from dormant tubers. Gene 134:229–233

    Article  CAS  PubMed  Google Scholar 

  32. Van Assche F, Clijsters H (1987) Enzyme analysis in plants as a tool for assessing phytotoxicity of heavy metal polluted soils. Med Fac Landbouww Rijksuniv Gent 52:1819–1824

    Google Scholar 

  33. Boudet AM (2000) Lignins and lignification: selected issues. Plant Physiol Biochem 38:81–96

    Article  CAS  Google Scholar 

  34. Goujon T, Sibout IR, Eudes A et al (2003) Genes involved in biosynthesis of lignin precursors in Arabidopsis thaliana. Plant Physiol Biochem 41:677–687

    Article  CAS  Google Scholar 

  35. Carpin S, Crèvecoeur M, Greppin H et al (1999) Molecular cloning and tissue-specific expression of an anionic peroxidase in zucchini. Plant Physiol 120:799–810

    Article  CAS  PubMed  Google Scholar 

  36. Chen EL, Chen YA, Chen LM et al (2002) Effect of copper on peroxidase activity and lignin content in Raphanus sativus. Plant Physiol Biochem 40:439–444

    Article  CAS  Google Scholar 

  37. Bouazizi H, Jouili H, El Ferjani E (2007) Effect of copper excess on growth, H2O2 production and peroxidase activities in maize seedlings (Zea mays L.). Pak J Biol Sci 10(5):751–756

    Article  CAS  PubMed  Google Scholar 

  38. Chmielowska J, Deckert J, Dỉaz J (2008) Activity of peroxidases and phenylalanine ammonia-lyase in lupine and soybean seedlings treated with copper and an ethylene inhibitor. Biological Lett 45:59–67

    CAS  Google Scholar 

  39. Tadeo RR, Primo-Miller E (1990) Peroxidase activity changes and lignin deposition during the senescence process in Citrus stigmas and styles. Plant Sci 68:47–56

    Article  CAS  Google Scholar 

  40. Mäder M (1992) Compartmentation of peroxidase isoenzymes in plant cells. In: Penel C, Gaspar Th, Greppin M (eds) Topics and detailed literature on molecular biochemical and physiological aspects. University of Geneva, Geneva, Switzerland, pp 37–46

    Google Scholar 

  41. Dixon RA (1986) The phytoalexin reponse: elicitation, signalling and control of host gene expression. Biol Rev Camb Phil Soc 62:239–291

    Article  Google Scholar 

  42. Nicholson RL, Hammerschmidt R (1992) Phenolic compounds and their role in disease resistance. Annu Rev Phytopathol 30:369–389

    Article  CAS  Google Scholar 

  43. Kováčik J, Bačker M, Kaduková J (2008) Physiological responses of Matricaria chamomilla to cadmium and copper excess. Environ Toxicol 23:123–130

    Article  PubMed  Google Scholar 

  44. Loukili A (1998) Approche biochimique de la thigmomorphogenèse chez la Tomate : rôle des peroxydases dans la réponse au signal mécanique. Ph.D. thesis, University of Tunis II, Biology; p 143

  45. Kasim WA (2006) Changes induced by copper and cadmium stress in the anatomy and grain yield of sorghum bicolor (L.) Moench. Int J Agri Biol 8(1):123–128

    CAS  Google Scholar 

  46. Da Cunha KPV, Do Nascimento CWA, Mendonc RM et al (2008) Cellular localization of cadmium and structural changes in maize plants grown on cadmium contaminated soil with and without liming. J Hazard Mater 160:228–234

    Article  PubMed  Google Scholar 

  47. Romero-Puertas MC (2002) Metabolismo de especies de oxigeno reaction en plantas de guisante (Pisum sativum L.) y en peroxisomas de hojas en condiciones de estrès pur cadmio. Ph.D. thesis, University of Granada, Spain

  48. Chaoui A, El Ferjani E (2005) Effects of cadmium and copper on antioxidant capacities,lignification and auxin degradation in leaves of pea (Pisum sativum L.) seedlings. CC R Biol 328(1):23–31

    Article  CAS  Google Scholar 

  49. Ali MB, Singh N, Shohael AM et al (2006) Phenolics metabolism and lignin synthesis in root suspension cultures of Panax ginseng in response to copper stress. Plant Sci 171:147–154

    Article  CAS  Google Scholar 

  50. Schϋtzendϋbel PS, Teichmann T, Gross K et al (2001) Cadmium-induced changes in antioxidative systems, H2O2 content and differentiation in pine (Pinus sylvestris) roots. Plant Physiol 127:887–892

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezzeddine El Ferjani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouazizi, H., Jouili, H., Geitmann, A. et al. Cell Wall Accumulation of Cu Ions and Modulation of Lignifying Enzymes in Primary Leaves of Bean Seedlings Exposed to Excess Copper. Biol Trace Elem Res 139, 97–107 (2011). https://doi.org/10.1007/s12011-010-8642-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8642-0

Keywords

Navigation