Skip to main content

Advertisement

Log in

Spectroscopic Studies on the Interaction of Fluorine Containing Triazole with Bovine Serum Albumin

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The binding of one fluorine including triazole (C10H9FN4S, FTZ) to bovine serum albumin (BSA) was studied by spectroscopic techniques including fluorescence spectroscopy, UV–Vis absorption, and circular dichroism (CD) spectroscopy under simulative physiological conditions. Fluorescence data revealed that the fluorescence quenching of BSA by FTZ was the result of forming a complex of BSA–FTZ, and the binding constants (K a) at three different temperatures (298, 304, and 310 K) were 1.516 × 104, 1.627 × 104, and 1.711 × 104 mol L−1, respectively, according to the modified Stern–Volmer equation. The thermodynamic parameters ΔH and ΔS were estimated to be 7.752 kJ mol−1 and 125.217 J mol−1 K−1, respectively, indicating that hydrophobic interaction played a major role in stabilizing the BSA–FTZ complex. It was observed that site I was the main binding site for FTZ to BSA from the competitive experiments. The distance r between donor (BSA) and acceptor (FTZ) was calculated to be 7.42 nm based on the Förster theory of non-radioactive energy transfer. Furthermore, the analysis of fluorescence data and CD data revealed that the conformation of BSA changed upon the interaction with FTZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Eslami H, Solati HM, Tahriri M (2009) The comparison of powder characteristics and physicochemical, mechanical and biological properties between nanostructure ceramics of hydroxyapatite and fluoridated hydroxyapatite. Mater Sci Eng C 29:1387–1398

    Article  CAS  Google Scholar 

  2. Vulpetti A, Hommel U, Landrum G (2009) Design and nmr-based screening of lef, a library of chemical fragments with different local environment of fluorine. J Am Chem Soc 131:12949–12959

    Article  CAS  PubMed  Google Scholar 

  3. Zhuang WP, Zhao XQ, Zhao G et al (2009) Synthesis and biological evaluation of 4-fluoroproline and 4-fluoropyrrolidine-2-acetic acid derivatives as new GABA uptake inhibitors. Bioorgan Med Chem 17:6540–6546

    Article  CAS  Google Scholar 

  4. Chai XY, Zhang J, Hua HJ (2009) Design, synthesis, and biological evaluation of novel triazole derivatives as inhibitors of cytochrome P450 14a-demethylase. Eur J Med Chem 44:1913–1920

    Article  CAS  PubMed  Google Scholar 

  5. Gottler LM, Lee HY, Shelburne CE et al (2008) Using fluorous amino acids to modulate the biological activity of an antimicrobial peptide. ChemBio Chem 9:370–373

    CAS  Google Scholar 

  6. Luo Y, Lu YH, Gan LL (2009) Synthesis, antibacterial and antifungal activities of novel 1, 2, 4-triazolium derivatives. Arch Pharm Chem Life Sci 342:386–393

    Article  CAS  Google Scholar 

  7. Barbero N, Barni E, Barolo C et al (2009) A study of the interaction between fluorescein sodium salt and bovine serum albumin by steady-state fluorescence. Dyes Pigments 80:307–313

    Article  CAS  Google Scholar 

  8. Xu H, Liu QW, Zuo Y, Bi Y (2009) Spectroscopic studies on the interaction of vitamin C with bovine serum albumin. J Solution Chem 38:15–25

    Article  CAS  Google Scholar 

  9. Chakrabarty A, Mallick A, Haldar B (2007) Binding interaction of a biological photosensitizer with serum albumins: a biophysical study. Biomacromolecules 8:920–927

    Article  CAS  PubMed  Google Scholar 

  10. Zhang YZ, Zhang XP, Hou HN et al (2008) Study on the interaction between Cu(phen) 2+3 and bovine serum albumin by spectroscopic methods. Biol Trace Elem Res 121:276–287

    Article  CAS  PubMed  Google Scholar 

  11. Lin H, Lan JF, Guan M et al (2009) Spectroscopic investigation of interaction between mangiferin and bovine serum albumin. Spectrochim Acta A 73:936–941

    Article  Google Scholar 

  12. Xu H, Gao SL, Lv JB, Liu QW (2009) Spectroscopic investigations on the mechanism of interaction of crystal violet with bovine serum albumin. J Mol Struct 919:334–338

    Article  CAS  Google Scholar 

  13. Pramanik S, Banerjee P, Sarkar A, Bhat SC (2008) Size-dependent interaction of gold nanoparticles with transport protein: a spectroscopic study. J Lumin 128:1969–1974

    Article  CAS  Google Scholar 

  14. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Plenum, New York, pp 237–265, Chapter 8

    Google Scholar 

  15. Lehrer SS (1971) The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry 10:3254–3263

    Article  CAS  PubMed  Google Scholar 

  16. Kathiravan A, Chandramohan M, Renganathan R, Sekar S (2009) Spectroscopic studies on the interaction between phycocyanin and bovine serum albumin. J Mol Struct 919:210–214

    Article  CAS  Google Scholar 

  17. Wang YQ, Zhang HM, Zhou QH (2009) Studies on the interaction of caffeine with bovine hemoglobin. Eur J Med Chem 44:2100–2105

    Article  CAS  PubMed  Google Scholar 

  18. Jhonsi MA, Kathiravan A, Renganathan R (2009) Spectroscopic studies on the interaction of colloidal capped CdS nanoparticles with bovine serum albumin. Colloid Surface B 72:167–172

    Article  Google Scholar 

  19. Zhang Y, Qi ZD, Zheng D, Li CH, Liu Y (2009) Interactions of chromium (III) and chromium (VI) with bovine serum albumin studied by UV spectroscopy, circular dichroism, and fluorometry. Biol Trace Elem Res 130:172–184

    Article  CAS  PubMed  Google Scholar 

  20. Gentili PL, Ortica F, Favaro G (2008) Static and dynamic interaction of a naturally occurring photochromic molecule with bovine serum albumin studied by UV–visible absorption and fluorescence spectroscopy. J Phys Chem B 112:16793–16801

    Article  CAS  PubMed  Google Scholar 

  21. Chen J, Jiang XY, Chen XQ, Chen Y (2008) Effect of temperature on the metronidazole–BSA interaction: multi-spectroscopic method. J Mol Struct 876:121–126

    Article  CAS  Google Scholar 

  22. Hu YJ, Liu Y, Xiao XH (2009) Investigation of the interaction between berberine and human serum albumin. Biomacromolecules 10:517–521

    Article  CAS  PubMed  Google Scholar 

  23. Il’ichev YV, Perry JL, Simon JD (2002) Interaction of ochratoxin A with human serum albumin. Preferential binding of the dianion and pH effects. J Phys Chem B 106:452–459

    Article  Google Scholar 

  24. Brown JR, Shockley P (1982) Serum albumin: structure and characterization of its ligand binding sites. Wiley, New York, pp 25–68

    Google Scholar 

  25. He XM, Carter DC (1992) Atomic structure and chemistry of human serum albumin. Nature 358:209–215

    Article  CAS  PubMed  Google Scholar 

  26. Zhang YZ, Li HR, Dai J, Liu Y (2010) Spectroscopic studies on the binding of cobalt(II) 1, 10-phenanthroline complex to bovine serum albumin. Biol Trace Elem Res. doi:10.1007/s12011-009-8502-y

    Google Scholar 

  27. Guo M, Lu WJ, Li MH, Wang W (2008) Study on the binding interaction between carnitine optical isomer and bovine serum albumin. Eur J Med Chem 43:2140–2148

    Article  CAS  PubMed  Google Scholar 

  28. Sklar LA, Hudson BS, Simoni RD (1977) Conjugated polyene fatty acids as fluorescent probes: synthetic phospholipid membrane studies. Biochemistry 16:819–828

    Article  CAS  PubMed  Google Scholar 

  29. Barik A, Mishra B, Kunwar A, Priyadarsini KI (2007) Interaction of curcumin with human serum albumin: thermodynamic properties, fluorescence energy transfer and denaturation effects. Chem Phys Lett 436:239–243

    Article  CAS  Google Scholar 

  30. Taboada P, Barbosa S, Castro E (2007) Effect of solvation on the structure conformation of human serum albumin in aqueous–alcohol mixed solvents. Chem Phys 340:59–68

    Article  CAS  Google Scholar 

  31. Kamat BP, Seetharamappa J (2004) In vitro study on the interaction of mechanism of tricyclic compounds with bovine serum albumin. J Pharm Biomed Anal 35:655–664

    Article  CAS  PubMed  Google Scholar 

  32. Zhang YZ, Chen XX, Dai J, Liu Y (2008) Spectroscopic studies on the interaction of lanthanum(III) 2-oxo-propionic acid salicyloyl hydrazone complex with bovine serum albumin. J Lumin 23:150–156

    Article  Google Scholar 

  33. Sreerama N, Woody RW (1993) A self-consistent method for the analysis of protein secondary structure from circular dichroism. Anal Biochem 209:32–44

    Article  CAS  PubMed  Google Scholar 

  34. Wang YQ, Zhang HM, Zhou QH (2009) Investigation of the interaction between pentachlorophenol and human serum albumin using spectral methods. J Mol Struct 932:31–37

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge financial support of this project by the National Natural Science Foundation of China (20873096, 20621502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Mei, P., Zhang, YZ. et al. Spectroscopic Studies on the Interaction of Fluorine Containing Triazole with Bovine Serum Albumin. Biol Trace Elem Res 138, 125–138 (2010). https://doi.org/10.1007/s12011-010-8630-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8630-4

Keywords

Navigation