Skip to main content
Log in

Structural Changes of Cell Wall and Lignifying Enzymes Modulations in Bean Roots in Response to Copper Stress

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Fourteen-day-old bean seedlings were cultured in nutrient solution containing Cu2+ ions at various concentrations (50 and 75 µM of CuSO4) for 3 days. This excess of copper induced a reduction in the water volume absorbed by the plants. Moreover, this reduction was accompanied by an increase of the amount of copper taken up by the roots. Analysis by native gel electrophoresis of cell wall peroxidase activities in the roots revealed a stimulation of two anionic isoforms (A2 and A3) under cupric stress conditions. Moreover, the activity of phenylalanine ammonia lyase (EC. 4.3.1.5), which plays an important role in plant defense, was enhanced. Copper-treated bean roots showed modifications in the cell walls of various tissues. Label for lignin, callose, and suberin with berberine-aniline blue revealed abnormal cell wall thickenings in the endodermis, the phloem, and the xylem, especially in plants treated with 75 µM CuSO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bouazizi H, Jouili H, Geitmann A, El Ferjani E (2008) Effect of copper excess on H2O2 accumulation and peroxidase activities in bean roots. Acta Biol Hung 59(2):233–245

    Article  PubMed  Google Scholar 

  2. Tadeo RR, Primo-Millo E (1990) Peroxidase activity changes and lignin deposition during the senescence process in Citrus stigmas and styles. Plant Sci 68:47–56

    Article  CAS  Google Scholar 

  3. Delannoy E, Marmey P, Penel C et al (2004) Les peroxydases végétales de classe III. Acta Bot Gall 151(4):353–380

    CAS  Google Scholar 

  4. De Jaegher G (1986) La thigmomorphogenèse de la bryone, lignification et métabolisme de l’éthylène. PhD thesis, Université de Clermont-Ferrand II, U.F.R de recherche scientifique et technique. p 195

  5. Guttenberg H (1968) Der primäre Bau der Angiospermenwurzel. Encyclopedia of Plant Anatomy. Gebüder Borntraeger, Berlin

    Google Scholar 

  6. Haas DL, Carothers ZB, Robbins RR (1976) Observations on the phi thickening and Casparian strips in pelargonium roots. Am J Bot 63:863–867

    Article  Google Scholar 

  7. Degenhardt B, Gimmler H (2000) Cell wall adaptation to multiple environmental stresses in maize roots. J Exp Bot 51:595–603

    Article  CAS  PubMed  Google Scholar 

  8. Schützendübel A, Schwanz P, Teichmann T et al (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content and differentiation in scots pine roots. Plant Physiol 127:887–898

    Article  PubMed  Google Scholar 

  9. Chen EL, Chen YA, Chen LM et al (2002) Effect of copper on peroxidase activity and lignin content in Raphanus sativus. Plant Physiol Biochem 40:439–444

    Article  CAS  Google Scholar 

  10. Mazhoudi S, Chaoui A, Ghorbal MH et al (1997) Response of antioxidant enzymes to excess copper in 252 tomato (Lycopersicon esculentum, Mill.) Plant Sci 127:182–186

    Article  Google Scholar 

  11. Jouili H, El Ferjani E (2003) Changes in antioxidant and lignifying enzyme activities in sunflower roots (Helianthus annuus L.) stressed with copper excess. CR Biologies 326:639–644

    Article  CAS  Google Scholar 

  12. Swain T, Hillis WE (1959) The phenolic constituents of Prunus domestica 1. The quantitative analysis of phenolic constituent. J Sci Food Agric 10:63–68

    Article  CAS  Google Scholar 

  13. Brundrett MC, Enstone DE, Peterson CA (1988) A berberine–aniline blue fluorescent staining procedure for suberin, lignin, and callose in Plant Tissue. Protoplasma 146:133–142

    Article  Google Scholar 

  14. Reichman SM (2002) The responses of plants to metal toxicity: a review focusing on copper, manganese and zinc. Aust Miner Energy Environ Found 14:1–54

    Google Scholar 

  15. Baker AJ (1981) Accumulators and excluders strategies in the response of plants to heavy Metals. J Plant Nutr 3:611–654

    Article  Google Scholar 

  16. CH LCH, Chen LM, Liu ZH (2005) Rapid effect of copper on lignin biosynthesis in soybean roots. Plant Sci 168:855–861

    Article  Google Scholar 

  17. Bouazizi H, Jouili H, Geitmann A et al (2007) Copper-induce oxidative stress in maize shoots (Zea mays L.) H2O2 accumulation and peroxidases modulation. Acta Biol Hung 58(2):209–218

    Article  PubMed  Google Scholar 

  18. Santiago LMS, Louro RP, Dulce E (2000) Compartmentation of phenolic compounds and phenylalanine ammonia-lyase in leaves of Phyllanthus tenellus Roxb and their induction by copper sulfate. Ann Bot 86:1023–1032

    Article  CAS  Google Scholar 

  19. Nicholson RL, Hammerschmid TR (1992) Phenolic compounds and their role in disease resistance. Annu Rev Phytopathol 30:369–389

    Article  CAS  Google Scholar 

  20. Ganeva G, Zozikova E (2007) Effect of increasing Cu2+ concentrations on growth and content of free phenols in two lines of wheat (Triticum aestivum) with different tolerance. Gen Appl Plant Physiol 33(1–2):75–82

    CAS  Google Scholar 

  21. Sgherri C, Coisantd E, Navari-Izzo F (2003) Phenols and oxidative status of Raphus sativus grown in copper excess. Physiol Plant 118:21–28

    Article  CAS  PubMed  Google Scholar 

  22. Van Tunen AJ, Mol JNM (1991) Control of favonoid synthesis and manipulation of flower colour. In: Blackie DG (ed) Developmental regulation of plant gene expression, Plant Biotechnology Series. New York: Chapman and Hall

    Google Scholar 

  23. Booker FL, Antonnen S, Heagle AS (1996) Catechin, and lignin contents of loblolly pine (Pinus taeda L.) needles after chronic exposure to ozone. New Phytol 132:483–492

    Article  CAS  Google Scholar 

  24. Barceló J, Poschenrieder CH (1990) Plant water relations as affected by heavy metal stress: a review. J Plant Nutr 13:1–37

    Article  Google Scholar 

  25. Barceló J, Vázquez MD, Pschenrieder CH (1988) Cadmium-induced structural and ultrastructural changes in the vascular system of bush bean stems. Bot Acta 101:254–261

    Google Scholar 

  26. Romero-Puertas MC (2002) Metabolismo de especies de oxigeno reaction en plantas de guisante (Pisum sativum L.) y en peroxisomas de hojas en condiciones de estrès pur cadmio. PhD thesis, University of Granada, Spain

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezzeddine El Ferjani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouazizi, H., Jouili, H., Geitmann, A. et al. Structural Changes of Cell Wall and Lignifying Enzymes Modulations in Bean Roots in Response to Copper Stress. Biol Trace Elem Res 136, 232–240 (2010). https://doi.org/10.1007/s12011-009-8530-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-009-8530-7

Keywords

Navigation