Skip to main content
Log in

Roles of Organic Acids and Nitrate in the Long-Distance Transport of Cobalt in Xylem Saps of Alyssum murale and Trifolium subterraneum

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Roles of organic acids and nitrate in the long-distance transport of cobalt (Co) in xylem saps of hyperaccumulator Alyssum murale and non-hyperaccumulator Trifolium subterraneum were studied under hydroponic conditions. Organic acids (oxalic, malic, malonic, citric, and fumaric) and nitrate in xylem sap samples were separated and determined simultaneously by reversed-phase high performance liquid chromatography after solid-phase extraction with nanosized hydroxyapatite. Results indicated that Co treatment significantly increased the concentrations of xylem oxalic and malic acids for the hyperaccumulator A. murale compared to the control but significantly decreased the concentrations of xylem nitrate and malonic acid; concentrations of citric acid in xylem sap samples did not show significant difference between the control and Co treatments. By analyzing the relationship between the concentrations of organic acids, nitrate, and concentrations of Co in xylem saps, it could be concluded that oxalic and malic acids in xylem saps seemed to participate in the long-distance Co translocation process, and citric acid did not relate to the xylem Co transport of A. murale and T. subterraneum. Our work might be very useful for understanding the mechanism of long-distance transport of heavy metals in hyperaccumulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Komeda, M. Kobayashi, S. Shimizu, A novel transporter involved in cobalt uptake, Proc. Natl. Acad. Sci. U. S. A. 94, 36–41 (1997).

    Article  PubMed  CAS  Google Scholar 

  2. F. Van Assche, H. Clijsters, Effects of metals on enzyme activity in plants, Plant Cell Environ. 13, 195–206 (1990).

    Article  Google Scholar 

  3. R.C. Dubey, R.S. Dwivedi, Effect of heavy metals on seed germination and seedling growth of soybean, Proc. Natl. Acad. Sci. India Sci. Lett. 10, 121–123 (1987).

    CAS  Google Scholar 

  4. O. Karovic, I. Tonazzini, N. Rebola, E. Edström, C. Lövdahl, B.B. Fredholm, D. Elisabetta, Toxic effects of cobalt in primary cultures of mouse astrocytes similarities with hypoxia and role of HIF-1α, Biochem. Pharmacol. 73, 694–708 (2007).

    Article  PubMed  CAS  Google Scholar 

  5. S.A. Khan, Sorption of the long-lived radionuclides cesium-134, strontium-85 and cobalt-60 on bentonite, Radioanal. Nucl. Chem. 258, 3–6 (2003).

    Article  CAS  Google Scholar 

  6. Y.M. Li, R.L. Chaney, E.P. Brewer, J.S. Angle, J. Nelkin, Phytoextraction of nickel and cobalt by hyperaccumulator Alyssum species grown on nickel-contaminated soils, Environ. Sci. Technol. 37, 1463–1468 (2003).

    Article  CAS  Google Scholar 

  7. M. Malik, R.L. Chaney, E.P. Brewer, Y.M. Li, J.S. Angle, Phytoextraction of soil cobalt using hyperaccumulator plants, Int. J. Phytoremediation 2, 319–329 (2000).

    Article  CAS  Google Scholar 

  8. F. A. Homer, R.S. Morrison, R.R. Brooks, J. Clemens, R.D. Reeves, Comparative studies of nickel, cobalt, and copper uptake by some nickel hyperaccumulators of the genus Alyssum, Plant Soil 138, 195–2115 (1991).

    Article  CAS  Google Scholar 

  9. M.H.M.N. Senden, F.J.M. Van Paassen, A.J.G.M. Van Der Mer, H.T.H. Wolterbeek, Cadmium–citric acid–xylem interaction in tomato plants, Plant Cell Environ. 15, 71–79 (1992).

    Article  CAS  Google Scholar 

  10. R. Tappero, E. Peltier, M. Gräfe, K. Heidel, M. Ginder-Vogel, K.J.T. Livi, M.L. Rivers, M.A. Marcus, R.L. Chaney, D.L. Sparks, Hyperaccumulator Alyssum murale relies on a different metal storage mechanism for cobalt than for nickel, New Phytol. 175, 641–654 (2007).

    Article  PubMed  CAS  Google Scholar 

  11. I. Raskin, R.D. Smith, D.E. Salt, Phytoremediation of metals: using plants to remove pollutants from the environment, Curr. Opin. Biotechnol. 8, 221–226 (1997).

    Article  PubMed  CAS  Google Scholar 

  12. Z.G. Wei, J.W. Wong, H.Y. Zhao, H.J. Zhang, H.X. Li, F. Hu, Separation and determination of heavy metals associated with low molecular weight chelators in xylem saps of Indian mustard (Brassica juncea) by size exclusion chromatography and atomic absorption spectrometry, Biol. Trace Elem. Res. 118, 146–158 (2007).

    Article  PubMed  CAS  Google Scholar 

  13. J.F. Ma, S.J. Zheng, H. Matsumoto, S. Hiradate, Detoxifying aluminium with buckwheat, Nature 390, 569–570 (1997).

    Article  Google Scholar 

  14. J.F. Ma, S. Hiradate, Form of aluminium for uptake and translocation in buckwheat (Fagopyrum esulentum Moench), Planta 211, 355–360 (2000).

    Article  PubMed  CAS  Google Scholar 

  15. E. Montargès-Pelletier, V. Chardot, G. Echevarria, L.J. Michot, A. Bauer, J.L. Morel, Identification of nickel chelators in three hyperaccumulating plants: an X-ray spectroscopic study, Phytochemistry 69, 1695–1709 (2008).

    Article  PubMed  CAS  Google Scholar 

  16. S.M. Ding, T. Liang, C.S. Zhang, J.C. Yan, Z.L. Zhang, Accumulation and fractionation of rare earth elements (REEs) in wheat: controlled by phosphate precipitation, cell wall absorption and solution complexation, J. Exp. Bot. 56, 2765–2775 (2005).

    Article  PubMed  CAS  Google Scholar 

  17. H.Z. Lian, L. Mao, X.L. Ye, J. Miao, Simultaneous determination of oxalic, fumaric, maleic and succinic acids in tartaric and malic acids for pharmaceutical use by ion-suppression reversed-phase high performance liquid chromatography, J. Pharm. Biomed. Anal. 19, 621–625 (1999).

    Article  PubMed  CAS  Google Scholar 

  18. C.I. Rodrigues, L. Martaa, R. Maiaa, M. Mirandab, M. Ribeirinhob, C. Máguas, Application of solid-phase extraction to brewed coffee caffeine and organic acid determination by UV/HPLC, J. Food Compos. Anal. 20, 440–448 (2007).

    Article  CAS  Google Scholar 

  19. J.H. Ding, X.X. Wang, T.L. Zhang, Q.M. Li, M.B. Luo, Optimization of RP-HPLC analysis of low molecular weight organic acids in soil, J. Liq. Chrom. & Rel. Technol. 29, 99–112 (2006).

    Article  CAS  Google Scholar 

  20. S.C. Cunha, J.O. Fernandes, I.M. Ferreira, HPLC/UV determination of organic acids in fruit juices and nectars, Eur. Food Res. Technol. 214, 67–71 (2002).

    Article  CAS  Google Scholar 

  21. E. Tatär, V.G. Mihucz, B. Kmethy, G. Záray, F. Fodord, Determination of organic acids and their role in nickel transport within cucumber plants, Microchem. J. 67, 73–81 (2000).

    Article  Google Scholar 

  22. M.H.M.N. Senden, A.J.G.M. Vander Meer, J. Limborgh, H.T.H. Wolterbeek, Analysis of major tomato xylem organic acids and PITC-derivatives of amino acids by RP-HPLC and UV detection, Plant Soil 142, 81–89 (1992).

    CAS  Google Scholar 

  23. E. Tatär, V.G. Mihucz, B. Kmethy, G. Záray, F. Fodord, Determination of organic acids in xylem sap of cucumber: effect of lead contamination, Microchem. J. 58, 306–314 (1998).

    Article  Google Scholar 

  24. H.J. Zhang, Z.G. Wei, H.Y. Zhao, H.X. Yang, H.X. Li, F. Hu, Effects of low-molecular-weight organic acids on gadolinium accumulation and transportation in tomato plants, Biol. Trace Elem. Res. doi: 10.1007/s12011-008-8224-6.

  25. W. Wei, R. Sun, Z.G. Wei, H.Y. Zhao, H.X. Li, F. Hu, Elimination of the interference from nitrate ions on oxalic acid in RP-HPLC by solid-phase extraction with nanosized hydroxyapatite, J. Liq. Chrom. & Rel. Technol. 32, 106–124 (2009).

    Article  CAS  Google Scholar 

  26. A. Morita, H. Horie, Y. Fujii, S. Takatsu, N.Watanabe, A. Yagi, H. Yokota, Chemical forms of aluminum in xylem sap of tea plants (Camellia sinensis L.), Phytochemistry 65, 2775–2780 (2004).

    Article  PubMed  CAS  Google Scholar 

  27. Z.G. Wei, J.W. Wong, F.S. Hong, H.Y. Zhao, H.X. Li, F. Hu, Determination of inorganic and organic anions in xylem saps of two contrasting oilseed rape (Brassica juncea L.) varieties: roles of anions in long-distance transport of cadmium, Microchem. J. 86, 53–59 (2007).

    Article  CAS  Google Scholar 

  28. D.E. Salt, R.D. Smith, I. Raskin, Phytoremediation, Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 643–668 (1998).

    Article  PubMed  CAS  Google Scholar 

  29. D.E. Salt, R.C. Prince, A.J.M. Baker, I. Raskin, I.J. Pickering, Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy, Environ. Sci. Technol. 33, 713–717 (1999).

    Article  CAS  Google Scholar 

  30. S.L. Brown, R.L. Chaney, J.S. Angle, A.J.M. Baker, Phytoremediation potential of Thlaspi caerulescens and Bladder Campion for zinc- and cadmium-contaminated soil, J. Environ. Qual. 23, 1151–1157 (1994).

    Article  CAS  Google Scholar 

  31. N.S. Pence, P.B. Larsen, S.D. Ebbs, D.L.D. Letham, M.M. Lasat, D.F. Garvin, D.Eide, L.V. Kochian, The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens, Proc. Natl. Acad. Sci. U. S. A. 97, 4956–4960 (2000).

    Article  PubMed  CAS  Google Scholar 

  32. W.E. Rauser, Structure and function of metal chelators produced by plants–the case for organic acids, amino acids, phytin and metallothioneins, Cell Biochem & Biophys. 31, 19–48 (1999).

    Article  CAS  Google Scholar 

  33. S. Clemens, Molecular mechanisms of plant metal tolerance and homeostasis, Planta 212, 475–486 (2001).

    Article  PubMed  CAS  Google Scholar 

  34. M.M. Lasat, A.J.M. Baker, L.V. Kochian, Altered Zn compartmentation in the root symplasm and stimulated Zn absorption into the leaf as mechanisms involved in Zn hyperaccumulation in Thlaspi caerulescens, Plant Physiol. 118, 875–883 (1998).

    Article  PubMed  CAS  Google Scholar 

  35. J. Jaroík, P. Zvára, J. Konený, M. Obdrálek, Dynamics of cobalt-60 uptake by roots of pea plant (Pisum sativum), Sci. Total Environ. 71, 225–229 (1988).

    Article  Google Scholar 

  36. H. Marschner, Mineral Nutrition of Higher Plants, Academic, London, (1995).

    Google Scholar 

  37. L.E. Hernandez, R. Carpena-Ruiz, A. Garate, Alterations in the mineral nutrition of pea seedlings exposed to cadmium, J. Plant Nutr. 19, 1581–1598 (1996).

    Article  CAS  Google Scholar 

  38. L.E. Hernández1, A. Gárate, R. Carpena-Ruiz, Effects of cadmium on the uptake, distribution and assimilation of nitrate in Pisum sativum, Plant Soil 189, 97–106 (1997).

    Article  Google Scholar 

  39. E. Delhaize, P.R. Ryan, P.J. Randall, Aluminum tolerance in wheat (Triticum aestivum L.) II. Aluminum stimulated excretion of malic acid from root apices, Plant Physiol. 103, 695–702 (1993).

    PubMed  CAS  Google Scholar 

  40. H. Harmens, P. M. Koevoets, J.A.C. Verkleij, W.H.O. Ernst, The role of low molecular weight organic acids in the mechanism of increased zinc tolerance in Silene vulgaris (Moench) Garcke, New Phytologist 126, 615–621 (1994).

    Article  CAS  Google Scholar 

  41. U. Krämer, J.D. Cotter-Howells, J.M. Charnock, A.J. Baker, J.A.C. Smith, Free histidine as a metal chelator in plants that accumulate nickel, Nature, 379, 635–638 (1996).

    Article  Google Scholar 

  42. D.H. McNear, E. Peltier, J. Everhart, R.L. Chaney, S. Sutton, M. Neville, M. Revers, D.L. Sparks, Application of quantitative fluorescence and absorption-edge computed microtomography to image metal compartmentalization in Alyssum murale, Environ. Sci. Technol. 39, 2210–2218 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Programs for High Technology Research and Development of China (no. 2007AA10Z406), the Research Fund for the Doctoral Program of Higher Education (no. 20070307051), and the Foundation for Talent Recommendation Program of Nanjing Agricultural University (no. 030-804076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Gui Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, W., Wang, Y., Wei, ZG. et al. Roles of Organic Acids and Nitrate in the Long-Distance Transport of Cobalt in Xylem Saps of Alyssum murale and Trifolium subterraneum . Biol Trace Elem Res 131, 165–176 (2009). https://doi.org/10.1007/s12011-009-8360-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-009-8360-7

Keywords

Navigation