Skip to main content
Log in

Oxalate secretion from the root apex of Sedum alfredii contributes to hyperaccumulation of Cd

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Backgrounds and aims

Organic acids play an important role in metal detoxification in plant, but accumulation of heavy metals with the help of organic acids secretion in hyperaccumulators has not been well documented. The aim of this study was to investigate the contribution of oxalate secretion to cadmium (Cd) hyperaccumulation in S. alfredii.

Methods

Hydroponic experiments were conducted to investigate the characteristics of Cd-induced secretion of oxalate in terms of pattern, location and oxalate-induced Cd translocation pathway, using ion channel inhibitors, scanning ion-selective electrode technique (SIET) and fluorescence imaging.

Results

Hyperaccumulating ecotype (HE) had nearly 2-fold higher oxalate secretion than non-hyperaccumulating ecotype (NHE). Phenylglyoxal effectively blocked Cd-induced oxalate secretion and decreased Cd concentration in HE while exogenous oxalate supply promoted Cd accumulation efficiently. SIET analysis indicated that Cd2+ influx into roots of HE mainly occurred at zone 0–10 mm from root apex where oxalate secretion was localized. Cd was distributed preferentially to the root stele of the HE but not the NHE, and was significantly increased with the secreted oxalates in HE.

Conclusions

Cd hyperaccumulation by HE S. alfredii is partially associated with oxalate secretion from the root apex, which mediates the loading of Cd from the xylem parenchyma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agrawal B, Lakshmanan V, Kaushik S, Bais HP (2012) Natural variation among Arabidopsis accessions reveals malic acid as a key mediator of Nickel (Ni) tolerance. Planta 236:477–489

    Article  CAS  PubMed  Google Scholar 

  • Agrawal B, Czymmek KJ, Sparks DL, Bais HP (2013) Transient influx of nickel in root mitochondria modulates organic acid and reactive oxygen species production in nickel hyperaccumulator Alyssum murale. J Biol Chem 288:7351–7362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berkelaar E, Hale B (2000) The relationship between root morphology and cadmium accumulation in seedlings of two durum wheat cultivars. Can J Bot 78:381–387

    CAS  Google Scholar 

  • Cieslinski G, Van Rees KCJ, Szmigielska AM, Krishnamurti GSR, Huang PM (1998) Low-molecular-weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation. Plant Soil 203:109–117

    Article  CAS  Google Scholar 

  • Conte SS, Walker EL (2012) Genetic and biochemical approaches for studying the yellow stripe-like transporter family in plants. Curr Top Membr 69:295–322

    Article  CAS  PubMed  Google Scholar 

  • Cosio C, Martinoia E, Keller C (2004) Hyperaccumulation of Cadmium and Zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level. Plant Physiol 134:716–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curie C, Cassin G, Couch D, Divol F, Higuchi K, Le Jean M, Misson J, Schikora A, Czernic P, Mari S (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 103:1–11

    Article  CAS  PubMed  Google Scholar 

  • Dinkelaker B, Romheld V, Marschner H (1989) Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.). Plant Cell Environ 12:285–292

  • Duarte B, Delgado M, Cacador I (2007) The role of citric acid in cadmium and nickel uptakeand translocation, in Halimione portulacoides. Chemosphere 69:836–840

    Article  CAS  PubMed  Google Scholar 

  • Faiyue B, Al-Azzawi MJ, Flowers TJ (2010) The role of lateral roots in bypass flow in rice (Oryza sativa L.). Plant Cell Environ 33:702–716

    CAS  PubMed  Google Scholar 

  • Han F, Shan X, Zhang S, Wen B, Owens G (2006) Enhanced cadmium accumulation in maize roots - the impact of organic acids. Plant Soil 289:355–368

    Article  CAS  Google Scholar 

  • Kim S, Lim H, Lee I (2010) Enhanced heavy metal phytoextraction by Echinochloa crus-galli using root exudates. J Biosci Bioeng 109:47–50

    Article  CAS  PubMed  Google Scholar 

  • Kotula L, Colmer TD, Nakazono M (2014) Effects of organic acids on the formation of the barrier to radial oxygen loss in roots of Hordeum marinum. Funct Plant Biol 41:187–202

  • Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534

    Article  PubMed  Google Scholar 

  • Kupper H, Mijovilovich A, Meyer-Klaucke W, Kroneck PMH (2004) Tissue-and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype) revealed by X-ray absorption spectroscopy. Plant Physiol 134:748–757

    Article  PubMed  PubMed Central  Google Scholar 

  • Li LZ, Liu XJ, Peijnenburg WJGM, Zhao JM, Chen XB, Yu JB, Wu HF (2012a) Pathways of cadmium fluxes in the root of the halophyte Suaeda salsa. Ecotoxicol Environ Saf 75:1–7

    Article  PubMed  Google Scholar 

  • Li TQ, Xu ZH, Han X, Yang XE, Donald SL (2012b) Characterization of dissolved organic matter in the rhizosphere of hyperaccumulator Sedum alfredii and its effect on the mobility of zinc. Chemosphere 88:570–576

    Article  CAS  PubMed  Google Scholar 

  • Li TQ, Tao Q, Liang CF, Shohag MJI, Yang XE, Donald SL (2013) Complexation with dissolved organic matter and mobility control of heavy metals in the rhizosphere of hyperaccumulator Sedum alfredii. Environ Pollut 182:248–255

    Article  CAS  PubMed  Google Scholar 

  • Li TQ, Tao Q, Liang CF, Yang XE (2014) Elevated CO2 concentration increase the mobility of Cd and Zn in the rhizosphere of hyperaccumulator Sedum alfredii. Environ Sci Pollut Res 21:5899–5908

    Article  CAS  Google Scholar 

  • Li TQ, Tao Q, Shohag MJI, Yang XE, Sparks DL (2015) Root cell wall polysaccharides are involved in cadmium hyperaccumulation in Sedum alfredii. Plant Soil 389:387–399

    Article  CAS  Google Scholar 

  • Lu LL, Tian SK, Yang XE, Wang X, Brown PH, Li TQ, He ZL (2008) Enhanced root-to-shoot translocation of cadmium in hyperaccumulating ecotype of Sedum alfredii. J Exp Bot 59:3203–3213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu LL, Liao XC, Labavitch J, Yang XE, Nelson E, Du YH, Brown PH, Tian SK (2014) Speciation and localization of Zn in the hyperaccumulator Sedum alfredii by extended X-ray absorption fine structure and micro-X-ray fluorescence. Plant Physiol Biochem 84:224–232

    Article  CAS  PubMed  Google Scholar 

  • Lux A, Marthinka M, Vaculik M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37

    Article  CAS  PubMed  Google Scholar 

  • M’Sehli W, Youssfi S, Donnini S, Dell’Orto M, De Nisi P, Zocchi G, Abdelly C, Gharsalli M (2008) Root exudation and rhizosphere acidification by two lines of Medicago ciliaris in response to lime-induced iron deficiency. Plant Soil 312:151–162

    Article  Google Scholar 

  • McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277–282

    Article  CAS  PubMed  Google Scholar 

  • Nigam R, Srivastava S, Prakash S, Srivastava MM (2001) Cadmium mobilization and plant availability- the impact of organic acids commonly exuded from roots. Plant Soil 230:107–113

    Article  CAS  Google Scholar 

  • North GB, Nobel PS (1996) Radial hydraulic conductivity of individual root tissues of Opuntia ficus-indica(L.) Miller as soil moisture varies. Ann Bot 77:133–142

    Article  Google Scholar 

  • Ohwaki Y, Sugahara K (1997) Active extrusion of protons and exudation of carboxylic acids in response to iron deficiency by roots of chickpea (Cicer arietinium L). Plant Soil 189:49–55

  • Pineros MA, Shaff JE, Kochian V (1998) Development, characterization, and application of a Cd-selective micro-electrode for the measurement of Cd fluxes in roots of Thlaspi species and wheat. Plant Physiol 116:1393–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quartacci MF, Irtelli B, Gonnelli C, Gabbrielli R, Navari-lzzo F (2009) Naturally-assisted metal phytoextraction by Brassica carinata: Role of root exudates. Environ Pollut 157:2697–2703

    Article  CAS  PubMed  Google Scholar 

  • Roberto T, Stefano C, Mimmo T (2015) Dynamics, thermodynamics and kinetics of exudates: crucial issues in understanding rhizosphere processes. Plant Soil 386:399–406

    Article  Google Scholar 

  • Roosens N, Verbruggen N, Meerts P (2003) Natural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from western Europe. Plant Cell Environ 26:1657–1672

  • Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Ann Rev Plant Physiol Mol Bio 52:527–560

  • Ryan PR, Delhaize E, Randall PJ (1995) Malate efflux from root apices and tolerance to aluminum are highly correlated in wheat. Aust J Plant Physiol 22:531–536

    Article  CAS  Google Scholar 

  • Salt DE, Kato N, Krämer U, Smith RD, Raskin I (2000) The role of root exudates in nickel hyperaccumulation and tolerance in accumulator and nonaccumulator species of Thlaspi. Phytoremediation of contaminated soil and water. CRC Press LLC, 189–200

  • Senden MHMN, van der Meer AJGM, Verburg TG, Wolterbeek HT (1995) Citric acid in tomato plant roots and its effect on cadmium uptake and distribution. Plant Soil 171:333–339

    Article  CAS  Google Scholar 

  • Smith RM, Martell AE (1977, 1982, 1989). Critical stability constants. Plenum Press, New York, Vols. 1–6

  • Tian SK, Lu LL, Labavitich J, Yang XE, He ZL, Hu HN, Sarngi R, Newvilel M, Commisso J, Brown P (2011) Cellular sequestration of cadmium in the hyperaccumulator plant species Sedum alfredii. Plant Physiol 157:1914–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsednee M, Yang SC, Lee DC, Yeh KC (2014) Root-secreted nicotianamine from Arabidopsis halleri facilitates Zinc hypertolerance by regulating Zinc bioavailability. Plant Physiol 166:839–852

    Article  PubMed  PubMed Central  Google Scholar 

  • Ueno D, Ma JF, Iwashita T, Zhao FJ, McGrath SP (2005) Identification of the form of Cd in the leaves of a superior Cd accumulating ecotype of Thlaspi caerulescens using Cd-NMR. Planta 221:928–936

    Article  CAS  PubMed  Google Scholar 

  • Ueno D, Iwashita T, Zhao FJ, Ma JF (2008) Characterization of Cd translocation and identification of the Cd form in xylem sap of the Cd-hyperaccumulator Arabidopsis halleri. Plant Cell Physiol 49:540–548

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen N, Hermans N, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    Article  CAS  PubMed  Google Scholar 

  • Verret F, Gravot A, Auroy P, Preveral S, Forestier C, Vavasseur A, Richaud P (2005) Heavy metal transport by AtHMA4 involves the N-terminal degenerated metal binding domain and the C-terminal His(11) stretch. FEBS Lett 579:1515–1522

    Article  CAS  PubMed  Google Scholar 

  • Vítková M, Komárek M, Tejnecký V, Šillerová H (2015) Interactions of nano-oxides with low-molecular-weight organic acids in a contaminated soil. J Hazard Mater 293:7–14

    Article  PubMed  Google Scholar 

  • White PJ, Whiting SN, Baker AJM, Broadley MR (2002) Does zinc move apoplastically to the xylem in roots of Thlaspi caerulescens? New Phytol 153:201–207

    Article  CAS  Google Scholar 

  • Xing JP, Jiang RF, Ueno D, Ma JF, Schat H, McGrath SP, Zhao FJ (2008) Variation in root-to-shoot translocation of cadmium and zinc among different accessions of the hyperaccumulators Thlaspi caerulescens and Thlaspi praecox. New Phytol 178:315–325

    Article  CAS  PubMed  Google Scholar 

  • Yang XE, Li TQ, Long XX, Xiong XH, He ZL, Stoffella PJ (2006) Dynamics of zinc uptake and accumulation in the hyperaccumulating and non-hyperaccumulating ecotypes of Sedum alfredii Hance. Plant Soil 284:109–119

    Article  CAS  Google Scholar 

  • Yeo AR, Yeo ME, Flowers TJ (1987) The contribution of an apoplastic pathway to sodium uptake by rice roots in saline conditions. J Exp Bot 38:1141–1153

    Article  CAS  Google Scholar 

  • Zhao FJ, Hamon RE, McLaughlin MJ (2001) Root exudates of the hyperaccumulator Thlaspi caerulescens do not enhance metal mobilization. New Phytol 151:613–620

    Article  CAS  Google Scholar 

  • Zhao FJ, Hamon RE, Lombi E, McLaughlin MJ, McGrath SP (2002) Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J Exp Bot 53:535–543

    Article  CAS  PubMed  Google Scholar 

  • Zheng SJ, Ma JF, Matsumoto H (1998) High aluminum resistance in buckwheat I. Al-induced specific secretion of oxalic acid from root tips. Plant Physiol 117:745–751

    Article  PubMed Central  Google Scholar 

  • Zhu XF, Zheng C, Hu YT, Jiang T, Liu Y, Dong NY, Yang JL, Zheng SJ (2011) Cadmium-induced oxalate secretion from root apex is associated with cadmium exclusion and resistance in Lycopersicon esculentum. Plant Cell Environ 34:1055–1064

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The National Natural Science Foundation of China (41271333), the National Key Technology Research and Development Program of China (2012BAC17B04) and the Fundamental Research Funds for the Central Universities, China financially supported this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingqiang Li.

Additional information

Responsible Editor: Juan Barcelo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, Q., Hou, D., Yang, X. et al. Oxalate secretion from the root apex of Sedum alfredii contributes to hyperaccumulation of Cd. Plant Soil 398, 139–152 (2016). https://doi.org/10.1007/s11104-015-2651-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2651-x

Keywords

Navigation