Skip to main content
Log in

Effects of Cerium on Key Enzymes of Carbon Assimilation of Spinach Under Magnesium Deficiency

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The mechanism of the fact that cerium improves the photosynthesis of plants under magnesium deficiency is poorly understood. The main aim of the study was to determine the role of cerium in the amelioration of magnesium deficiency effects in CO2 assimilation of spinach. Spinach plants were cultivated in Hoagland’s solution. They were subjected to magnesium deficiency and to cerium chloride administered in the magnesium-present Hoagland’s media and magnesium-deficient Hoagland’s media. The results showed that the chlorophyll synthesis and oxygen evolution was destroyed, and the activities of Rubisco carboxylasae and Rubisco activase and the expression of Rubisco large subunit (rbcL), Rubisco small subunit (rbcS), and Rubisco activase subunit (rca) were significantly inhibited, then plant growth was inhibited by magnesium deficiency. However, cerium promotes the chlorophyll synthesis, the activities of two key enzymes in CO2 assimilation, and the expression of rbcL, rbcS, and rca, thus leading to the enhancement of spinach growth under magnesium-deficient conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.R. Portis Jr. and H.W. Heldt (1976) Light-dependent changes of the Mg2+ concentration in the stroma in relation to the Mg2+ depending of CO2 fixation in intact chloroplasts. Biochim Biophys Acta 449: 434–446.

    Article  PubMed  CAS  Google Scholar 

  2. W. F. Bennett (1997) Nutrients deficiencies & toxicities in crop plants. APS Press, The American Phythopathological Society, St. Paul, MN, USA.

    Google Scholar 

  3. R.L.Aitken, T. Dickson, K. J. Hailes, P. W. Moody (1999) Response of field-grown maize to applied magnesium in acidic soil in northeastern Australia. Aust J Agric Res 50: 191–198.

    Article  CAS  Google Scholar 

  4. A.D. Mitchell, P. Loganathan, T.W. Payn, R.W.Tillman (1999) Effect of calcined magnesite on soil and Pinus radiata foliage magnesium in pumice soils of New Zealand. Aust J Soil Res 37: 545–560.

    Article  CAS  Google Scholar 

  5. E.S. Fischer and E. Bremer (1993) Influence of magnesium deficiency on rates of leaf expansion, starch and sucrose accumulation and net assimilation in Phaseolus vulgaris. Physiol Plant 89: 271–276.

    Article  CAS  Google Scholar 

  6. K.I. Cakma (1994) Activity of ascorbate-dependent H2O2-scavenging enzymes and leaf chlorosis are enhanced in magnesium and potassium deficient leaves, but not in phosphorus-deficient leaves. J Exp Bot 45: 1259–1266.

    Article  Google Scholar 

  7. K.I. Cakma, C. Hengeler, H. Marschner(1994) Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency. J Exp Bot 45: 1245–1250.

    Article  Google Scholar 

  8. K.I. Cakma, C. Hengeler, H. Marschner (1994) Changes in phloem export of sucrose in leaves in response to phosphorous, potassium and magnesium deficiency in bean plant. J Exp Bot 45: 1251–1257.

    Article  Google Scholar 

  9. B. Mehne-Jakobs (1995) The influence of magnesium deficiency on carbohydrate concentrations in Norway spruce (Picea abies) needles. Tree Physiol 15: 577–584.

    PubMed  CAS  Google Scholar 

  10. E.S. Fischer, G. Lohaus, D. Heineke, H.W. Heldt (1998) Magnesium deficiency results in accumulation of carbohydrates and amino acids in source and sink leaves of spinach. Physiol Plant 102: 16–20.

    Article  CAS  Google Scholar 

  11. H. Marschner and I. Cakmak (1989) High light intensity enhances chlorosis and necrosis in leaves of zinc, potassium and magnesium deficient bean (Phaseolus vulgaris) plants. J Plant Physiol 134: 308–315.

    CAS  Google Scholar 

  12. W. Laing, D. Greer, O. Sun, P. Beets, A. Lowe, T. Payn (2000) Physiological impacts of Mg deficiency in Pinus radiata: growth and photosynthesis. New Phytol 146: 47–57.

    Article  CAS  Google Scholar 

  13. O.J. Sun, G.J.H.P.Gielen, R.S.C.Tattersall Smith, A. J.Thorn (2001) Growth, Mg nutrition and photosynthetic activity of Pinus radiata: evidence that NaCl addition counteracts the impact of low Mg supply. Trees 15: 335–340.

    Article  CAS  Google Scholar 

  14. H. Dannehl, H. Wietoska, H. Heckmann, D.Godde (1996) Changes in Dl-protein turnover and recovery of photosystem II activity precede accumulation of chlorophyll in plants after release from mineral stress. Planta 199: 34–42.

    Article  CAS  Google Scholar 

  15. C. Hermans, G.N. Johnson, R.J. Strasser, N. Verbruggen (2004) Physiological characterisation of magnesium deficiency in sugar beet: acclimation to low magnesium differentially affects photosystems I and II. Planta 220: 344–355.

    Article  PubMed  CAS  Google Scholar 

  16. F.S. Hong, Z.G. Wei, G.W. Zhao (2002a) Mechanism of lanthanum effect on the chlorophyll of spinach. Sci China Ser C 45(2): 166–176.

    Article  CAS  Google Scholar 

  17. F.S. Hong, L. Wang, X. X. Meng, Z.G. Wei, G.W. Zhao (2002b) The effect of cerium on the chlorophyll formation of spinach. Biol Trace Elem Res 89: 263–277.

    Article  CAS  Google Scholar 

  18. F. S. Hong, C. Liu, L. Zheng, X. F. Wang, K. Wu, W. P. Song, S.P. Lv, Y.Tao, G.W. Zhao (2005) Formation of complexes of rubisco–rubisco activase from La3+, Ce3+ treatment spinach. Sci China Ser B 48: 67–74.

    CAS  Google Scholar 

  19. C. Liu, F. S. Hong, K. Wu, H. B. Ma, X.G. Zhang, C.J. Hong, C. Wu, F.Q. Gao, F. Yang, T. Liu, J. H. Xu, Y. N. Xie, Z.R. Li (2006) Effects of Nd3+ ion on carboxylation activity of ribulose-1,5-bisphosphate carboxylase/oxygenase of spinach. Biochem Biophys Res Commun 342: 36–43.

    Article  PubMed  CAS  Google Scholar 

  20. H. Meider (1984) Class experiments in plant physiology. George Allen and Unwin, London, pp 72–74.

    Google Scholar 

  21. D. I. Arnon (1949) Copper enzymes in isolated chloroplasts: polyphenol oxidase in Beta vulgaris, Plant Physiol 24: 1–15.

    Article  PubMed  CAS  Google Scholar 

  22. Y. Lan and K. A. Mott (1991) Determination of apparent Km values for ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase using the spectrophotometric assay of Rubisco activity. Plant Physiol 95: 604–609.

    Article  PubMed  CAS  Google Scholar 

  23. S. J. Crafts-Brander, F. J. van de Loo, M.E. Salvucci (1997) The two of ribulose-1,5-bisphosphate carboxylase-oxygenase activase differ in sensitivity to elevated temperature. Plant Physiol 114: 439–444.

    Google Scholar 

  24. O. H. Lowry, N. J. Rosebrough, A. L. Farr, R. J. Randall. Protein measurement with the folin phenol reagent. J Biol Chem 193 (1951) 265–275.

    PubMed  CAS  Google Scholar 

  25. K. J. Livak, T. D. Schmittgen (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25: 402–408.

    Article  PubMed  CAS  Google Scholar 

  26. L. D. Ke and Z. Chen (2000) A reliability test of standard-based quantitative PCR: exogenous vs endogenous standards. Mol Cell Probes 14: 127–35.

    Article  PubMed  CAS  Google Scholar 

  27. W. H. Liu and A. David (2002) Saint validation of a quantitative method for real time PCR kinetics Biochem Biophys Res Commun 294: 347–353.

    Article  PubMed  CAS  Google Scholar 

  28. B. Dong, Z. M. Wu, X. K. Tang (1993) Effects of LaCl3 on physiological activity of cucumber roots under calcium-deficiency conditions. J Rare Earths 11(1): 65–68.

    CAS  Google Scholar 

  29. Z. G. Wei, F. S. Hong, G. W. Zhao (2000): Determination of double decker sandwich structure of praseodymium-chlorophyll a molecule. Chem J Chin Univ 21(3): 331–334.

    CAS  Google Scholar 

  30. Z. G. Wei, F. S. Hong, Y. Tao, G. W. Zhao (2000). Determination of double decker sandwich structured La-substituted chlorophyll a by EXAFS. Acta Chimi Sin 58(5): 559–562.

    CAS  Google Scholar 

  31. F. S. Hong, Z. G. Wei, G.W. Zhao, Y. Tao (2001). Determination of coordination structure metal-substituted by spectroscopy. Prog Biochem Biophys 28(3): 381–386.

    CAS  Google Scholar 

  32. C. Liu, B. F. Pan, W. Q. Cao, Y. Lu, H. Huang, L. Chen, X. Q. Liu, X. Wu, F. S. Hong (2008) Influences of calcium deficiency and cerium on growth of spinach plants. Biol Trace Elem Res 121: 266–275.

    Article  CAS  Google Scholar 

  33. N. Murata (1969) Control of excitation transfer in photosynthesis II. Magnesium ion-dependent distribution of excitation energy between two pigment systems in spinach chloroplasts. J Biochem Biophys Acta 189: 171–181.

    Article  CAS  Google Scholar 

  34. H. J. Rurainski and G. Mader(1997) Regulation of the Hill reaction by cation and its abolishment by uncouplers. Biochim Biophys Acta 461: 489–499.

    Google Scholar 

  35. L. Chen, X. Wu, H. Huang, X. Q. Liu, C. Liu, L. Zheng, F. S. Hong (2009) Effects of Mg2+ on spectral characteristics and photosynthetic functions of spinach photosystem II. Spectrochim Acta Part A 72: 343–347.

    Article  CAS  Google Scholar 

  36. F.S Hong, X. F. Wang, C. Liu, G. X. Su, W.P. Song, K. Wu, Y. Tao, G.W. Zhao (2003) Effect of Ce3+ on spectral characteristic of D1/D2/Cytb559 complex from spinach. Sci China Ser B 46: 42–50.

    CAS  Google Scholar 

  37. X.Q. Liu, M.Y. Su, C. Liu, F.S. Hong (2007a) Effects of 4f electron characteristic and alternation valence of rare earths on photosynthesis: regulating distribution of energy and activities of spinach chloroplast. J Rare Earths 25: 495–501.

    Article  Google Scholar 

  38. X.Q. Liu, M.Y. Su, C. Liu, F.S. Hong (2007b). Effects of CeCl3 on energy transfer and oxygen evolution within spinach photosystem II. J Rare Earths 25: 624–631.

    Article  Google Scholar 

  39. J. S. Robert(1999) Questions about the complexity of chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase. Photosynth Res 60: 29–42.

    Article  Google Scholar 

  40. N.H. Chua, G.W. Schmidt (1979) Transport of proteins into mitochondria and chloroplasts. J Cell Biol 81: 461–483

    Article  PubMed  CAS  Google Scholar 

  41. K. Keegstra, L. J. Olsen, S. M. Theg (1989) Chloroplastic precursors and their transport across the envelopemembranes. Annu Rev Plant Physiol Plant Mol Biol 40: 471–501.

    Article  CAS  Google Scholar 

  42. A.R. Portis Jr., M. E. Salvucci, W. L. Ogren (1986) Activation of ribulosebisphosphate carboxylase/oxygenaseat physiological CO2 and ribulosebisphosphate concentrations by Rubisco activase. Plant Physiol 82: 967–971.

    Article  PubMed  CAS  Google Scholar 

  43. A.R. Portis Jr. (1995) The regulation of Rubisco by Rubisco activase. J Exp Bot 46: 1285–1291.

    CAS  Google Scholar 

  44. E. S. D. Jimenez, L. Medrano, E. Martinez-Barajas (1995) Rubisco activae, a possible new member of the molecular chaperonefamily. Biochemistry 34:2826–2831.

    Article  Google Scholar 

  45. S. P. Robinson, V. J. Streusand, J. M. Chatifield, A. R. Portis Jr. (1988). Purification and assay of Rubisco activase from leaves. Plant Physiol 88: 1008–1014.

    Article  PubMed  CAS  Google Scholar 

  46. L. H. Robert, A.R. Portis Jr. (2003). The life of ribulose-1,5-bisphosphate carboxylase/oxygenase-posttranslational facts and mysteries. Arch Biochem Biophys 414: 150–158.

    Google Scholar 

  47. H.M. Tu, Y. S. Yang, Y. Li, E. D.Wang (2000) Effect of rare earth ions on kinetic properties of Escherichia coli leucyl-tRNA synthetase. J Rare Earths 18(3): 224–228.

    Google Scholar 

  48. W. J. Chen, Y. H. Guo, G. W. Zhao, Y. Tao, J. P. Luo, T. D. Huo(2000). Effects of rare earth ions on activity of RuBPcase in tobacco. Plant Sci 152: 145–151.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant no. 30470150, 30800068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Fashui.

Additional information

Ze Yuguan and Zhou Min contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuguan, Z., Min, Z., Luyang, L. et al. Effects of Cerium on Key Enzymes of Carbon Assimilation of Spinach Under Magnesium Deficiency. Biol Trace Elem Res 131, 154–164 (2009). https://doi.org/10.1007/s12011-009-8354-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-009-8354-5

Keywords

Navigation