Skip to main content
Log in

Iron Dialyzability from Hospital Duplicate Meals: Daily Intake

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Both total and dialyzable iron levels and corresponding dialyzability were determined in 108 duplicate meals during 36 consecutive days. Total mean iron fraction of 5.90 ± 4.97 mg was found in the meals. The iron supplied by the meals is directly and significantly (p < 0.05) correlated with macromicronutrient content (carbohydrates, fiber, and protein). The mean iron dialyzability (4.81 ± 3.25%) was low and not significantly different among the three primary meals (breakfast, lunch, and dinner). Significant interactions of several minerals on iron levels were found (p < 0.05). Iron dialyzability was only statistically influenced by zinc dialyzability in meals (p < 0.05). The dialyzed iron fraction present in meals was significantly correlated with protein and ascorbic acid levels (p < 0.01). The mean iron daily dietary intake was 17.7 ± 6.91 mg. The hospital meals provided enough iron. Foods of animal origin are primary sources of iron in diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. F. Fairbanks, Hierro en la medicina y la nutrición, in Nutricion en Salud y Enfermedad, M. E. Shils, J. A. Olson, M. Shike, and A. C. Ross, eds., McGraw-Hill Interamericana, Madrid, pp. 223–256 (2002).

    Google Scholar 

  2. J.J.B. Anderson, Minerals, in Food, Nutrition, & Diet Therapy, 11th edn, L. K. Mahan, and S. Escott-Stump, eds., Saunders, Philadelphia, pp. 135–143 (2004).

    Google Scholar 

  3. F. Perez-Llamas, J. F. Marin, E. Larque, M. Garaulet, and S. Zamora, Effect of protein hydrolysis on the dialysability of amino acids and minerals in infant formulas, J. Physiol. Biochem. 59, 19–24 (2003).

    PubMed  CAS  Google Scholar 

  4. H. T. Le, I. D. Brouwer, K. C. Nguyen, J. Burema, and F. J. Kok, The effect of iron fortification and de-worming on anaemia and iron status of Vietnamese schoolchildren, Br. J. Nutr. 97, 955–962 (2007).

    Article  CAS  Google Scholar 

  5. A. Muñoz Hoyos, and A. Molina Carballo. Hierro, in Tratado de Nutrición, vol. I, A. Gil-Hernández, ed., Acción Médica, Madrid, pp. 973–996 (2005).

    Google Scholar 

  6. F. Camara, M. A. Amaro, R. Barbera, and G. Clemente, Bioaccessibility of mineral in school meals: comparison between dialysis and solubility methods, Food Chem. 92, 481–489 (2005).

    Article  CAS  Google Scholar 

  7. K. J. H. Wienk, J. J. M. Marx, M. Santos, A. G. Lemmens, E. J. Brink, R. Van der Meer, and A. C. Beynen, Dietary ascorbic acid raises iron absorption in anaemic rats through enhancing mucosal iron uptake independent or iron solubility in the digesta, Br. J. Nutr. 77, 123–131 (1997).

    Article  PubMed  CAS  Google Scholar 

  8. L. A. Perlas, and R. S. Gibson, Household dietary strategies to enhance the content and bioavailability of iron, zinc and calcium of selected rice- and maize-based Philippine complementary foods, Matern. Child Nutr. 1, 263–273 (2005).

    Article  PubMed  Google Scholar 

  9. A. Grewal, and S. Jood, Effect of processing treatments on nutritional and antinutritional contents of green gram, J. Food Biochem. 30, 535–546 (2006).

    Article  CAS  Google Scholar 

  10. D. Vitali, I. Vedrina Dragojevic, B. Sebecic, and L. Vujic, Impact of modifying tea-biscuit composition on phytate levels and iron content and availability, Food Chem. 102, 82–89 (2007).

    Article  CAS  Google Scholar 

  11. E. Planells, N. Sanchez-Morito, M. A. Montellano, P. Aranda, and J. Llopis, Effect of magnesium deficiency on enterocyte Ca Fe Cu Zn Mn and Se content, J. Physiol. Biochem.56, 217 (2000).

    Article  PubMed  CAS  Google Scholar 

  12. M. Lucarini, G. Di Lullo, M. Cappelloni, G. Lombardi-Boccia, In vitro estimation of iron and zinc dialysability from vegetables and composite dishes commonly consumed in Italy: effect of red wine, Food Chem. 70, 39–44 (2000).

    Article  CAS  Google Scholar 

  13. J. C. Lopez, A. Lozano, A. Alegria, R. Barbera, and R. Farre, Mathematic predictive models for calculating copper, iron and zinc dialysability in infant formulas, Eur. Food Res. Technol. 212, 608–612 (2001).

    Article  CAS  Google Scholar 

  14. W. Windisch, Interaction of chemical species with biological regulation of the metabolism of essential trace elements, Anal. Bioanal. Chem. 372, 421–425 (2002).

    Article  PubMed  CAS  Google Scholar 

  15. G. Lombardi-Boccia, S. Ruggeri, A. Aguzzi, and M. Cappelloni, Globulins enhance in vitro iron but not zinc dialysability: a study on six legume species, J. Trace Elem. Medic. Biol. 17, 1–5 (2003)

    Article  CAS  Google Scholar 

  16. B. Martinez, F. Rincón, and M. V. Ibáñez, Effects of ascorbic acid and ferrous sulfate on trace element extractability by dialyzation of weaning foods, Food Chem. 86, 369–376 (2004).

    Article  CAS  Google Scholar 

  17. B. Martinez, F. Rincón, and M. V. Ibáñez, Dialysability of trace elements in infant foods containing liver, Food Chem. 94, 210–218 (2006).

    CAS  Google Scholar 

  18. V. Agte, M. Jahagirdar, and S. Chiplonkar, Apparent absorption of eight micronutrients and phytic acid from vegetarian meals in ileostomized human volunteers, Nutrition 21, 481–489 (2005).

    Article  CAS  Google Scholar 

  19. D. Kilicalp, S. Dede, F. Belge, and M. Tatar, Effect of protein deficiency on macroelement and trace element levels of weanling rats’ small intestine and liver tissues, Biol. Trace Elem. Res. 107, 255–261 (2005).

    Article  PubMed  CAS  Google Scholar 

  20. I. Lestienne, P. Besancon, B. Caporiccio, V. Lullien-Pellerin, and S. Treche, Iron and zinc in vitro availability in pearl millet flours (Pennisetum glaucum) with varying phytate, tannin, and fiber contents, J. Agric. Food Chem. 53, 3240–3247 (2005).

    Article  PubMed  CAS  Google Scholar 

  21. C. De Souza Noguera, C. Colli, and O. M. Silverio Amancio, Infant formula iron dialysability related to other nutrients, Food Chem. 90, 779–783 (2005).

    Article  CAS  Google Scholar 

  22. K. Thompson, R. Molina, T. Donaghey, J. D. Brain, and M. Wessling-Resnick, The influence of high iron diet on rat lung manganese absorption, Toxicol. Appl. Pharmacol. 210, 17–23 (2006).

    Article  PubMed  CAS  Google Scholar 

  23. G. Ma, Y. Li, Y. Jin, F. Zhai, F. J. Kok, and X. Yang, Phytate intake and molar ratios of phytate to zinc, iron and calcium in the diets of people of China, Eur. J. Clin. Nutr. 61, 368–374 (2007).

    Article  PubMed  CAS  Google Scholar 

  24. M. Singh, P. Sanderson, R. F. Hurrell, S. J. Fairweather-Tait, C. Geissler, A. Prentice, and J. L. Beard, Iron bioavailability: UK food standards agency workshop report, Br. J. Nutr. 96, 985–990 (2006).

    Article  PubMed  CAS  Google Scholar 

  25. S. Gupta, A. Jyothi Lakshmi, and J. Prakash, In vitro bioavailability of calcium and iron from selected green leafy vegetables, J. Sci. Food Agric. 86, 2147–2152 (2006).

    Article  CAS  Google Scholar 

  26. C. Velasco-Reynold, M. Navarro-Alarcon, H. López-Ga de la Serrana, V. Perez-Valero, M. C. Lopez-Martinez, In vitro determination of zinc dialysability from duplicate hospital meals: influence of other nutrients, Nutrition 24, 84–93 (2008).

    Article  PubMed  CAS  Google Scholar 

  27. C. Velasco-Reynold, M. Navarro-Alarcon, H. López-Ga de la Serrana, V. Perez-Valero, and M. C. Lopez-Martinez, Determination of daily dietary intake of chromium by duplicate diet sampling: in vitro availability study, Food Add. Contam. 25, 604–610 (2008).

    Article  CAS  Google Scholar 

  28. E. Garcia, C. Cabrera, M. L. Lorenzo, M. C. Lopez, and J. Sanchez, Estimation of chromium bioavailability from diet by an in vitro method, Food Add. Contam. 18, 601–606 (2001).

    Article  CAS  Google Scholar 

  29. R. F. Hurrell, M. B. Reddy, J. Burri, and J. D. Cook, Phytate degradation determines the effect of industrial processing and home cooking on iron absorption from cereal-based foods, Br. J. Nutr. 88, 117–123 (2002).

    Article  PubMed  CAS  Google Scholar 

  30. Y. Abebe, A. Bogale, K. M. Hambidge, B. J. Stoecker, K. Bailey, and R. S. Gibson, Phytate, zinc iron and calcium content of selected raw and prepared foods consumed in rural Sidama, Southern Ethiopia, and implications for bioavailability, J. Food Compos. Anal. 20, 161–168 (2007).

    Article  CAS  Google Scholar 

  31. L. A. Perlas, and R. S. Gibson, Use of soaking to enhance the bioavailability of iron and zinc from rice-based complementary foods used in the Philippines, J. Sci. Food Agric. 82, 1115–1121 (2002).

    Article  CAS  Google Scholar 

  32. K. Wrobel, K. Brobel, G. R. V. Marquez, and M. D. R. Almanza, Studies on bioavailability of some bulk and trace elements in Mexican tortilla using an in vitro model, Biol. Trace Elem. Res. 68, 97–106 (1999).

    Article  PubMed  CAS  Google Scholar 

  33. L. Rossanderhulten, M. Brune, B. Sandstrom, B. Lonnerdal, and L. Hallberg, Competitive-inhibition of iron-absorption by manganese and zinc in humans, Am. J. Clin. Nutr. 54, 52–156 (1991).

    Google Scholar 

  34. M. Navarro, and R. J. Wood, Plasma changes in micronutrients following a multivitamin and mineral supplement in healthy adults, J. Amer. Coll. Nutr. 22, 124–129 (2003).

    CAS  Google Scholar 

  35. C. Velasco-Reynold, M. Navarro-Alarcon, H. López-Ga de la Serrana, V. Perez-Valero, M. C. Lopez-Martinez, Analysis of total and dialyzable copper levels in duplicate meals by ETAAS: daily intake. Eur. Food Res. Technol. 227, 367–373 (2008).

    Article  CAS  Google Scholar 

  36. F. Camara, R. Barbera, M. A. Amaro, and R. Farre, Calcium, iron, zinc and copper transport and uptake by Caco-2 cells in school meals: influence of protein and mineral interactions, Food Chem. 100, 1085–1092 (2007).

    Article  CAS  Google Scholar 

  37. S. S. Gropper, M. Bader-Crowe, L. S. McAnulty, D. White, and R. E. Keith, Non-anemic iron depletion, oral iron supplementation and indices of copper status in college-aged females, J. Am. Coll. Nutr. 21, 545–552 (2002).

    PubMed  CAS  Google Scholar 

  38. C. Velasco-Reynold, M. Navarro-Alarcon, H. López-Ga de la Serrana, V. Perez-Valero, M. C. Lopez-Martinez, Total and dialyzable levels of manganese from duplicate meals and influence of other nutrients: estimation of daily dietary intake, Food Chem. 109, 113–121 (2008).

    Article  CAS  Google Scholar 

  39. Institute of Medicine, Food and Nutrition Board, Dietary references intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium and zinc, The National Academic Press, Washington D. C. (2001).

  40. M. Olivares, F. Pizarro, S. De Pablo, M. Araya, and R. Uauy, Iron, zinc, and copper in common foods and daily intakes in Santiago, Chile, Nutrition 20, 205–212 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Navarro-Alarcon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velasco-Reynold, C., Navarro-Alarcon, M., Lopez-Ga de la Serrana, H. et al. Iron Dialyzability from Hospital Duplicate Meals: Daily Intake. Biol Trace Elem Res 130, 241–248 (2009). https://doi.org/10.1007/s12011-009-8339-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-009-8339-4

Keywords

Navigation